GRAPTOLOITES OF AUSTRALIA: BIBLIOGRAPHY AND HISTORY OF RESEARCH

By R. A. Keble, F.G.S.
(Palaeontologist, National Museum, Melbourne)

and

Professor W. N. Benson, B.A., D.Sc.
(University of Otago, Dunedin, New Zealand.)

The Australian graptolite fauna is probably the most complete in the world, certainly in regard to its Ordovician components, a fact clearly appreciated by McCoy. He had ready for the press descriptions and figures of most of the species afterwards described in James Hall’s Monograph published in 1865, which may be regarded as the basis of systematic graptolite research, when he received from Hall a proof of his figures. McCoy immediately conceded him priority and adopted his specific names. Had Hall delayed sending his proof, McCoy would certainly have published his figures and descriptions and his name would have been just as prominent in the literature of graptolites as Hall’s. Commenting on “Graptolites (Didymograpsus) fruticosus (Hall sp.),” McCoy says, “this is the first Victorian graptolite I ever saw, and, as it was then a new species, I had named it in my MSS. after Mr. J. A. Panton, who found it in the soft shales of Bendigo, of which goldfield he was then Warden, and in whose hospitable camp I was then able to recognize the true geological age of the gold-bearing slates of the colony for the first time. The same species was subsequently discovered by Professor Hall in Canada; and as he kindly sent me an early proof of his illustration before publication, I of course adopted his name as above” (Prod. Pal. Vict. I, p. 13, 1874. Melb.). Thus, that well-known species Tetragraptus fruticosus J. Hall escaped the specific name panti McCo y only by months.

The present generation of research workers can scarcely realize the difficulties that confronted the indefatigable pioneers in Australian graptolite research. True, the geologists of the Geological Survey of Victoria collected most of McCoy’s specimens, but not all. We find McCoy himself at Bendigo and at other places. Australia was then largely an unsettled country with its ways of communication yet
unopened and the mode of travel either by foot or horse. Bendigo, to refer to it again, may now be reached in a few hours by train or car, but in McCoy’s time the journey took three or four days of fatiguing travel. So, too, in T. S. Hall’s day, when, although railways made access easier, the difficulties were still formidable. Workers like W. J. Harris and R. A. Keble who have carried on research both before and since the advent of the motor car, can appreciate the difficulties experienced by earlier workers and the enormous advantage modern workers have.

Much of this early work on Australian graptolites has been overlooked, possibly because the literature is difficult of access, and the laborious search for new facts by the pioneers forgotten, for there are few left to tell. It was known to Nicholson, Salter, Lapworth, and other overseas workers, and lest it goes into the limbo of forgotten things, we have taken some trouble to record it.

ABBREVIATIONS.

Aust. Ass. Adv. Sci.—Report of the Meeting of the Australasian Association for the Advancement of Science. (New title, Australian and New Zealand Association for the Advancement of Science.) Published in city where meeting is held.
Mem. N.Y. State Mus.—Memoir of the New York State Museum. Albany.
Min. and Geol. Journ.—Mining and Geological Journal, Department of Mines. Melbourne.
BIBLIOGRAPHY.

1. 1856- Aplin, C. D. H., Geol. Surv. Vict., Maps, Q.S. 1 NW., 2 NW., 2 SW., 6 NW., 6 SW., 7 SE., 10 NW., 10 NE.
2. 1856- Aplin, C. D. H., and Taylor, N., ibid., 6 SE, 7 NE.
3. 1856- Taylor, N., ibid., 5 NW., 5 SW., 13 NE., 51 SW.
5. 1858- Daintree, R., ibid., 12 SE.
24. 1892 Hall, T. S., On a New Species of Dictyonema, ibid., pp. 7, 8, pl. i, ii.
42. 1900 Hall, T. S., On a Collection of Graptolites from Mandurama, Rec. Geol. Surv. N.S.W., vii, pp. 16-17, pl. vi.
44. 1900 Ruedemann, R., Note on the Growth and Development of Goniodagnostus thureani McCoy, Bull. N.Y. State Mus., 52, (6), 19 fig.
45. 1900 Hall, T. S., On the Occurrence of Monograptus in New South Wales, Proc. Linn. Soc. N.S.W., xxvii, pp. 654-655, fig.
57. 1907 Hall, T. S., Reports on Graptolites, ibid., ii, (2), pp. 137-143, pl. xv.
GRAPTOLITES OF AUSTRALIA

70. 1912 Hall, T. S., Reports on Graptolites, ibid., pp. 188-211, pl. xxvi.
72. 1913 Howitt, A. M., Geol. Surv. Vict., Map, Q.S.42b, SW.
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1918</td>
<td>On Some Hydroid Remains of Lower Palaeozoic Age from Monegeeta, near Lancefield</td>
<td>Chapman, F.</td>
<td>388-393</td>
</tr>
<tr>
<td>1919</td>
<td>The Diabases and Associated Rocks of the Howqua River near Mansfield, with reference to the Heathcoteian Problem in Victoria</td>
<td>Teale, E. O.</td>
<td>33-66</td>
</tr>
<tr>
<td>1919</td>
<td>A Contribution to the Palaeozoic Geology of Victoria with Special Reference to the Districts of Mount Wellington and Nowa Nowa respectively</td>
<td>Teale, E. O.</td>
<td>67-146</td>
</tr>
<tr>
<td>1920</td>
<td>On a Further Collection of Graptolites from Tolwong (cf. 63, 159)</td>
<td>Hall, T. S.</td>
<td>63-66</td>
</tr>
<tr>
<td>1920</td>
<td>Some Subzonal Forms of the Lower Bendigo and Upper Lancefield Zones</td>
<td>Keble, R. A.</td>
<td>195-202</td>
</tr>
<tr>
<td>1920</td>
<td>The Physiography and Geology of the Bulla-Sydenham Area</td>
<td>James, A. V. G.</td>
<td>323-349</td>
</tr>
<tr>
<td>1921</td>
<td>Note on the Occurrence of Graptolite-bearing Beds of Ordovician Age at Yalgogrin and Ariah Park</td>
<td>Harper, L. F.</td>
<td>78-81</td>
</tr>
<tr>
<td>1921</td>
<td>The Relationships of the Sedimentary Rocks of the Gisborne District, Victoria</td>
<td>Harris, W. J., and Crawford, W.</td>
<td>39-78</td>
</tr>
<tr>
<td>1921</td>
<td>Report on Graptolites from Main Cut, Phosphate Hill, Mansfield</td>
<td>Hall, T. S.</td>
<td>46</td>
</tr>
<tr>
<td>1921</td>
<td>Report on Graptolites Occurring with the Upper Cambrian Fauna at Loyola, Mansfield</td>
<td>Keble, R. A.</td>
<td>p. 46</td>
</tr>
<tr>
<td>1922</td>
<td>Structure of the Bendigo Goldfield</td>
<td>Herman, H.</td>
<td>10-11</td>
</tr>
<tr>
<td>1923</td>
<td>The Daylesford Goldfield</td>
<td>Whitelaw, H. S., and Baragwanath, W.</td>
<td>1-64</td>
</tr>
<tr>
<td>1923</td>
<td>The Geology of Bacchus Marsh and Comidairi District</td>
<td>Summers, H. S.</td>
<td>1632-1648</td>
</tr>
<tr>
<td>1923</td>
<td>The Geology of Mount Macedon and Woodend Area</td>
<td>Summers, H. S.</td>
<td>1654-1663</td>
</tr>
<tr>
<td>1923</td>
<td>On the Cambrian (Heathcoteian) and Lower Ordovician Rocks of the Lancefield and Romsey District</td>
<td>Skeats, E. W.</td>
<td>1664-1673</td>
</tr>
<tr>
<td>1924</td>
<td>Victorian Graptolites, New Series, Part I</td>
<td>Harris, W. J.</td>
<td>92-106</td>
</tr>
<tr>
<td>1924</td>
<td>On the Question of the Devonian Age of the Tanjilian Fauna and Flora of Victoria</td>
<td>Chapman, F.</td>
<td>313-318</td>
</tr>
<tr>
<td>1925</td>
<td>Bright, Wandiligong, and Freeburgh Goldfields</td>
<td>Kenny, J. P. L.</td>
<td>479-481</td>
</tr>
<tr>
<td>1925</td>
<td>Report on Graptolites</td>
<td>Keble, R. A.</td>
<td>479-481</td>
</tr>
</tbody>
</table>

119. 1932 Elles, G. L., Correlation Table of Australian and extra-Australian Graptolite Zones, ibid., opp. p. 41.

120. 1932 Keble, R. A., Zones and Sub-zones of the Lower Ordovician, Victoria, ibid., pp. 41-43.

122. 1932 Ripper, E. A., Distribution of the Zones of the Castlemaine and Darriwil Series near Inglislon, ibid., xlv, (2), pp. 200-211, pl. xx, fig.

127. 1933 Harris, W. J., *Isograptus caduceus* and its Allies in Victoria, ibid., xli, (1), pp. 79-114, pl. vi, 8 fig.
130. 1934 Harris, W. J., The Eastern Boundary of the Bendigo Goldfield, ibid., pp. 200-206, 2 fig.
141. 1935 Naylor, G. F. K., Note on the Geology of the Goulburn District with Special Reference to Palaeozoic Stratigraphy, Journ. Roy. Soc. N.S.W., lxix, (1), pp. 75-85, pl. iii, 3 fig.
144. 1936 Keble, R. A., Graptolites of Victoria: A Lower Ordovician
GRAPTOLITES OF AUSTRALIA

Monograptus from Bendigo, Mem. Nat. Mus., Melb., x, pp. 119-120, pl. xvii.

146. 1936 Bulman, O. M. B., The Structure of Oncograptus T. S. Hall, Geo!. Mag., lxiii, pp. 271-8, 5 fig.

149. 1937 Monsen, Astrid, Die Graptolithenfauna im Unteren Didymograptusschiefer (Phyllograptusschiefer), Norwegens, Norsk Geol. Tids., xvi, pp. 57-266, 2 fig., pl. i-xx.

156. 1938 Harris, W. J., and Thomas, D. E., Notes on the Geology of the Howqua Valley, ibid., pp. 81-84, fig.

158. 1938 Bulman, O. M. B., Graptolithina, in Schindewolf Handbuch Palaeozoologie Leiferung 2 (Bd. 2 D). Berlin.

Authors' Publication Number in Bibliography.

Aplin, C. D. H., 1, 2, 4 Cookson, I. C., 140
Baragwanath, W., 94, 104 Crawford, W., 90
Benson, W. N., 111, 142 Daintree, R., 5, 7
Browne, W. R., 116 David, T. W. E., 62, 118
Bulman, O. M. B., 103, 106, 112, 117, 124, 145, 146, 158 Dun, W. S., 34, 35, 41, 115
Chapman, H., 136, 140 Elles, G. L., 49, 54, 60, 119, 125, 139
GRAPTOLOGIES OF AUSTRALIA

Etheridge Jun., R., 13, 19
Frech, F., 33
Hall, T. S., 24, 25, 26, 28, 29, 30, 31, 32, 36, 37, 38, 39, 40, 42, 43, 45, 46, 47, 48, 51, 52, 53, 56, 57, 59, 63, 64, 69, 70, 76, 77, 78, 80, 86, 91
Harper, L. F., 89
Harris, W. J., 81, 90, 98, 102, 105, 109, 114, 121, 127, 129, 130, 131, 134, 138, 154
Hart, T. S., 61
Herman, H., 93
Herrmann, O., 20, 21
Hopkinson, J., 15
Howitt, A. M., 72
James, A. V. G., 88
Jones, O. A., 107
Junker, N. R., 74
Kemble, R. A., 87, 92, 101, 102, 108, 109, 111, 114, 120, 121, 126, 128, 131, 142, 144, 150
Kenny, J. P. L., 100
Lapworth, C., 15
Laseron, C. F., 66
McCoy, F., 6, 8, 11, 14, 16, 17, 18
Monsen, A., 149
Murray, R. A. F., 10, 22
Naylor, G. F. K., 141, 143, 152, 159
Nicholson, H. A., 12
Pritchard, G. B., 23, 27
Ripper, E. A., 122, 151
Roemer, F., 33
Ruedemann, R., 44, 50, 68, 73, 133
Salter, J. W., 9
Sherrard, K., 132, 150
Skeats, E. W., 58, 85, 97, 110, 113
Summers, H. S., 95, 96
Taylor, N., 2, 3
Teale, E. O., 83, 84
Thomas, D. E., 123, 126, 129, 134, 135, 136, 137, 147, 153, 154, 155, 156, 157
Ulrich, G. H. F., 4
Whitelaw, H. S., 94
Wilkinson, C. S., 7, 10
Wood, E. M. R., 49, 54, 55, 60
Woolnough, W. G., 65

History of Research.
First Period: 1856-1892.

In the following pages, numbers enclosed in brackets refer to works listed in the Bibliography. Only those papers that have contributed in some way to our knowledge of Australian graptolites are reviewed in this History of Research.

1856-1865.—The first Australian graptolites were collected by C. D. H. Aplin, N. Taylor, G. F. H. Ulrich, R. Daintree, C. S. Wilkinson, and R. A. F. Murray, Field Geologists of the Geological Survey of Victoria. The identification of these, which appear on their Quarter Sheets (1, 2, 3, 4, 5, 7, and 10), were made by Frederick McCoy, who was appointed Palaeontologist to the Geological Survey in 1856.

1861.—In an essay “On the Ancient and Recent Natural History of Victoria,” McCoy (6) summarized his identifications made for the field geologists. He recorded from Victoria Diplograpsus pristis, D. mucronatus, D. rectangularis, D. ramosus, D. folium, D. bicornis, D. ovatus, Phyllo-
graptus typus, Didymograpsus serratus, D. caduceus, D. furcatus, Graptolites gracilis, G. logani, G. quadribrachiatus, G. octobrachiatus, G. ludensis, G. tenuis, G. latus and G. sagittarius, forms common to both Europe and America.

1862.—McCoy (8) published the foregoing list in the Annals and Magazine of Natural History in anticipation of the specimens being exhibited at the Intercolonial Exhibition to be held in London the following year.

1863.—Salter (9) referred to “a remarkable coincidence even to minutae” in the graptolites from Victoria displayed by McCoy at the Intercolonial Exhibition with those of the Skiddaw Slates, remarking that “they agreed genus for genus, and almost specifically, with the North-of-England forms.” He inferred that “there is a peculiar zone or horizon of the Llandeilo rocks of which these genera of graptolites are characteristic.” In his list of graptolites from the Skiddaw Slates, he referred to a form as “Didymograptus sp. like G. pantoni McCoy.” He concluded by naming this form D. v-fractus and it is specifically distinct from D. pantoni (cf. 14).

1867.—McCoy (11) stated that “all the slates containing gold-bearing veins in Victoria were identical in age and character with those in North Wales in which the Romans worked the gold-mines of Gogofau.” The majority of the graptolites found in Victoria are found in the Welsh Llandeilo Flags, the Cumberland and the Scotch Shales, and almost all those identified by J. Hall from Canada occur in Victoria. He added Diplograpsus palmeus (Barrande), D. bryonoides and D. nitidus to the list of Victorian forms and stated that “on the upper end of many specimens of D. palmeus there is a large, smooth, pear-shaped or heart-shaped appendage which he believed to be an ovarian vesicle.”

1872.—Nicholson (12) referred to Australia “in which some of the peculiar genera of the Skiddaw and Quebec groups have been discovered. Here we are compelled to assume that we have a case of migration, though we have at present no data whereby to decide whether the course of migration was from Canada to Australia (as is most probable), or vice versa.”

1874.—Etheridge (13) either figured or recorded eleven species from Victoria, nine of which McCoy had previously recorded and two that McCoy had exhibited at the Intercolonial Exhibition as Didymograptus (?) fruticosus J. Hall and D. pantoni (?) MSS. McCoy (14) described and figured ten species, viz.: Phyllograptus folium (His.) var. typus
GRAPTOLITES OF AUSTRALIA

(Hall), Diplograpsus mucronatus (J. Hall sp.), D. pristis (His. sp.), D. rectangularis (McCoy), D. (Climacograptus) bicornis (J. Hall), Graptolites (Didymograptus) fruticosus (J. Hall sp.), G. (D.) bryonoides (J. Hall sp.), G. (D.) octobrachiatus (J. Hall sp.), and G. (D.) logani (J. Hall) var. australis nov.

J. Hall described and figured Tetragraptus fruticosus in 1857. McCoy states (loc. cit.) that he had previously named it in manuscript "pantoni," but as Hall had forwarded proofs of a manuscript in which the specific name "fruticosus" was used, he adopted it. Both Hall and McCoy describe and figure the three-branched and four-branched forms, but not the two-branched form. Etheridge (13) figures the two-branched under the name of Didymograptus pantoni (?) which, being both generically and taxonomically in order, must receive priority.

1875.—Hopkinson and Lapworth (15) drew attention to the fact that species characteristic of the Middle Arenig of St. David's, Wales, occur in Australia.

McCoy (16) figured and described seven species, viz.: Graptolites (Didymograpsus) extensus (J. Hall), G. (D.) caduceus (Salter), Diplograpsus palmeus (Barr. sp.), Cladograpsus ramosus (J. Hall sp.), C. furcahis (J. Hall sp.), Graptolites (Didymograpsus) gracilis (J. Hall), Retiolites australis sp. nov.

1876.—McCoy (17) described and figured Didymograpsus thureaui. He suggested the genus "Goniograptus" for such forms in which the "branches of the funicle (for which he introduced the name stolons) are angularly bent at the points of budding into celluliferous stems." He thus distinguished between monopodial and dichotomous branching.

1877.—McCoy (18) again described and figured Graptolites (Didymograpsus) thureaui (cf. 17), also G. (D.) headi (Hall).

1879.—Etheridge (19), in his catalogue of Australian fossils, included all the Victorian graptolites hitherto identified by McCoy except Goniograptus thureaui and systematized the somewhat confused taxonomy.

1885, 1886.—Herrmann (20, 21) commented on the cosmopolitan distribution of the graptolites, pointing out that they are found in three continents, viz. Europe, America, and Australia. He referred to the researches of McCoy and Etheridge as showing their affinities with the British Arenig and Llandeilo.
1887.—R. A. F. Murray (22) listed the identifications hitherto made by McCoy. He also recorded from Deddick* Diplograpsus rectangularis McCoy, and from Guttamurrr Creek, Snowy River, Didymograpsus caduceus and Diplograpsus foliaceus "in vertical slates capping the granite."

The First Period of Research might aptly be called McCoy's Period, for on his identifications was based all that was adduced in connection with Australian graptolites. The fauna was correlated with the European and American which, at that time, was still imperfectly known. No attempt was made to discover an Australian stratigraphical sequence.

Second Period: 1892-1932.

Early in the Second Period, T. S. Hall (25) suggested a basis for zoning the Australian fauna and subsequently developed it (28 and 64). W. J. Harris and R. A. Keble (81, 121) working on Hall's zones, defined them and showed that they were capable of much closer subdivision.

1892.—G. B. Pritchard (23) described and figured Temnograptus magnificus sp. nov. from Lancefield (cf. 39). T. S. Hall (24) described and figured Dictyonema grande sp. nov. (cf. 31).

1893.—T. S. Hall (25) suggested a basis for zoning the Victorian Lower Ordovician and named some of the zonal graptolites that could be used, among which were Tetragraptus fruticosus, Didymograptus caduceus, D. bifidus, Phyllograptus typus and Loganograptus logani.

1895.—G. B. Pritchard (27) added to his description (23) of Temnograptus magnificus and T. S. Hall's species Dictyonema grande (24). He compared Victorian forms of Clonograptus flexilis with J. Hall's original description. He also recorded Tetragraptus quadribrachiatus from Lancefield.

T. S. Hall (28) instituted a system of zoning for the Castlemaine area which was incidentally to become the basis for the Lower Ordovician of Victoria. The Castlemaine area is suited to such a purpose as the railway cuttings and water races are generally at right angles to the strike and sections are exposed over long distances. He referred to Didymograptus caduceus as Tetragraptus caduceus, an anomaly that he says (cf. 29) was forced on him by the confused synonymy of Didymograptus caduceus. He also listed the hitherto unrecorded Thamnograptus sp. and Dichograptus kjerulfi. He commented on the similarity of some forms of Tetra-

*If a locality is in any other State than Victoria, the particular State is always mentioned.
graptus fruticosus to D. v-fractus (9). All other species mentioned by T. S. Hall were previously recorded by McCoy.

After commenting on the associations at Bendigo, Daylesford, Lancefield, Gisborne, Darriwil and New Zealand, he proposed the following zoning, the beds being arranged in descending order:

1. Zone of Loganograptus logani occurring at Castlemaine and Darriwil.
2. Zone of Tetrargraptus caduceus occurring at Castlemaine.
3. Phyllograptoto-caduceus zone occurring at Castlemaine.
4. Burns’ Reef Beds occurring at Castlemaine.
5. Wattle Gully Beds occurring at Castlemaine and (?) in New Zealand.
6. Zone of Tetrargraptus fruticosus occurring at Chewton, Bendigo, Spring Plains, Tarilta, Upper Loddon, Daylesford, Gisborne and to the north-west of Lancefield.
7. The Lancefield shales.

Hall called No. 1 the Darriwil Zone. It rests immediately above 2, 3, 4, and 5, which together form the Castlemaine Zone; and this, in turn, rests on the Bendigo Zone, which Hall defined as the strata containing Tetrargraptus fruticosus. All strata below the Bendigo Zone containing graptolites were called by Hall the Lancefield Zone. He was more or less hazy as to what constituted his Darriwil and Lancefield Zones.

1896.—T. S. Hall (29) commented on the synonymy of Salter’s Didymograptus caduceus, described from a Canadian specimen, and regarded Salter’s species as valid. He pointed out that Nicholson (after following J. Hall, who made Salter’s D. caduceus synonymous with Tetrargraptus bigsbyii) “found a species in the Skiddaw Slates which seemed to agree perfectly with Salter’s Canadian species. This species he named Didymograptus gibberulus” stating that “Salter’s original specimen,” (although he had not seen it) “was beyond doubt an example of Tetrargraptus bryonoides or T. bigsbyi, and that Salter had confused an English species with it.” T. S. Hall pointed out the improbability of this and contended that “D. gibberulus must be relegated to synonymy, for it does not seem separable from D. caduceus.”

1897.—T. S. Hall (30) recorded from Wombat Creek, North-eastern Victoria, Climacograptus bicornis and Dicellograptus elegans; from Tungamah, (?) Dicellograptus sexfensis, (?) Dicranograptus ramosus and Diplograptus pristis; from Walwa (Walwal) Creek, Dicellograptus
GRAPTOLITES OF AUSTRALIA

26

anceps, Diplograptus pristis, D. truncatus, Climacograptus bicornis; and from an area east of the Snowy River, Diplograptus rectangularis, D. foliaceus and Didymograptus caduceus.

T. S. Hall (31) recorded from a locality four miles from Matlock, Victoria, on the Wood’s Point Road, forms comparable with Diplograptus morrisi and Diplograptus foliaceus.

He pointed out that the specific name “grande” (24) in Dictyonema grande was preoccupied and he substituted “macgillvrayi” for it. He discussed the relative position of the graptolite bed at Lancefield in regard to other beds in Victoria.

He examined (32) a collection of graptolites from Coimadai. From Basin Creek he identified Didymograptus bifidus, D. murchisoni, D. extensus, Tetragraptus quadribrachiatus, T. serra, Phyllograptus typus, P. angustifolius; from Cockatoo Gully, Didymograptus extensus, D. caduceus, Tetragraptus cf. quadribrachiatus, Phyllograptus (?) angustifolius; from Back Creek, Didymograptus caduceus; from Deep Creek, Melton, D. caduceus, Tetragraptus serra, Dichograptus (?) sp. nov., Phyllograptus typus (?), Diplograptus sp. (very common).

W. S. Dun (34) recorded graptolites from the County of Wellesley, New South Wales. From the Parish of Lawson, he identified Dicranograptus furcatus, Didymograptus cf. caduceus, Diplograptus cf. mucronatus, D. cf. rectangularis and Phyllograptus (?); from the south-west corner of the Parish of Currawang, Diplograptus cf. palmeus, Dicranograptus sp., Diplograptus sp.; from Stockyard Creek, Parish of Alexander, Dicranograptus furcatus, Diplograptus cf. palmeus, D. cf. (? rectangularis McCoy), Dicellograptus sp.; from 1½ miles south of Portion 2, Parish of Tingaringi, Diplograptus cf. palmeus, Didymograptus sp., Dicranograptus furcatus, Diplograptus sp.

1898.—W. S. Dun (35) identified Diplograptus, Climacograptus and Dicellograptus from Myall Reef, near Tomingley, in the Peak Hill District, New South Wales.

T. S. Hall (36), after reviewing the evidence, thought that a graptolite, probably referable to Diplograptus, may have been found at Lisle, Tasmania.

1899.—T. S. Hall (37) compiled a list of identifications from various localities in Victoria. The localities are at Wombat Creek, Chewton, Cabanandra, Bulla, Sunbury, Deddick, Bendigo, Sandy’s Creek, Ryan’s Creek, Tarilta,
Newham, Parwan, Darriwil, Holden, Leigh River, Melbourne, Lancefield, Loddon River, Kangaroo Creek, Coolbarghurk, Spring Plains, Daylesford, Cockatoo Gully, Werribee Gorge, Watchbox Ranges, and Redesdale. Most of these localities are from the Quarter Sheets (vide 1, 2, 3, 4, 5, 7, 10).

He recorded from Alexandra, Monograptus cf. galaensis; from McLauchlan's Creek, south of the Victorian border, East Gippsland, (?) Dicellograptus morrisi, D. aniceps, Diplograptus truncatus, (?) Climacograptus caudatus; and from Thoona, Glossograptus, Diplograptus, Climacograptus and cf. Dichograptidae. From the Moorabool River near Maude, he recorded Tetragraptus cf. quadribrachiatus.

He recorded (38) from Cravensville, Climacograptus bicornis et var. tridendatus, Diplograptus foliaceus, Dicellograptus sectans, Glossograptus sp.; from mid-way between Cravensville and Dart River, Didymograptus sp.; from Glen-dart, near Dart River, Climacograptus sp., Glossograptus sp., Diplograptus sp. He gives the age of the Cravensville beds as Upper Ordovician.

He adds that the Glossograptus obtained from Cravensville and Glen-dart is identical with that previously recorded from Sandy’s Creek (37), and Tungamah (30).

A collection of graptolites from a small quarry a few hundred yards north of the disused Mt. William Railway Station near Lancefield disclosed a number of new species as well as already described forms on which he had based his Lancefield Zone. The new species described and figured (39) were Bryograptus victoriae, B. clarki, Leptograptus antiquus, Didymograptus pritchardi, D. taylori, Tetragraptus decipiens, Dictyonema pulchellum, and he recorded Clonograptus flexilis, C. magnificus, C. rigidus, C. tenuellus, Phyllograptus sp. and Dictyonema macgillivrayi.

He reviewed (40) the earlier graptolite work done by McCoy and others. He pointed out that the work of these pioneers, as in England before Lapworth undertook his work of revision, is unreliable. He stressed the fact “that the minute differences on which it has been found advisable to separate the species in this difficult group were not then generally recognized, and we find many of our graptolites identified with forms from which we now regard them as even, it may be, generically distinct. In the case of those forms where the method of branching and the habit is a guide there was, of course, less liability to confusion, and here the specific identifications are of value, but it is extremely doubtful, on the other hand, whether any of the
Diplograptidae have been correctly determined and a great number of those forms referred to *Didymograptus* (*sensu stricto*) are probably incorrectly identified. One feature, however, must not be overlooked, and this is that the records have in many cases been made from exact localities; and this in the case of Sir F. McCoy's papers, owing to his official connection with the Survey, is of peculiar value, as the precise position from which the fossils came is recorded both by him and on the Geological maps, and we are thus frequently able to check the records in a very effective way.”

Discussing the sequence, he commented on certain species that seem anomalous in other countries. The form he named *Leptograptus antiquus* (39, cf. 111), though not perhaps a typical member of the genus, is certainly not a *Didymograptus*. It has since been made synonymous with *Bryograptus* (111). *Didymograptus bifidus* (now *D. protobifidus* (151)) dies out long before *Phyllograptus typus* has disappeared and is survived by a *Clonograptus* and two or three species of *Dichograptus*. He emphasized the fact that in the Northern Hemisphere *Clonograptus flexilis* is associated with forms which characterize the next higher horizon in Victoria. The case of *C. rigidus* is also striking, for though in America it is, according to Amii, associated with *Loganograptus*, yet with us the latter genus does not appear till *Phyllograptus typus* and closely allied species have become extinct. In regard to this statement of Hall's it should be stated that *Loganograptus* has since been found at a much lower horizon (131).

Hall discussed the composite fauna of the Lower Ordovician in regard to the Lancefield, Bendigo, Castlemaine and Darriwil Series. Apart from the Castlemaine Series he does not mention limiting forms. He states that the Darriwil Fauna “differs from the typical Castlemaine fauna by the almost entire absence of *Didymograptus caduceus* and the appearance of *Lasiograptus* and *Glossograptus*. *Trigono-graptus* and several species of *Didymograptus* and *Clina-co-graptus* occur, while *Tetragraptus serra* and *Loganograptus* still persist. This series appears to mark the close of the Lower Ordovician as in the succeeding rocks Dicranograptidae put in their appearance.” Thus he regarded the appearance of *Dicranograptus* as heralding the incoming of the Upper Ordovician.

He commented on Upper Ordovician species, pointing out that no stratigraphical work had yet been done.

In regard to the Silurian, he identified *Monograptus*
Graptolites of Australia

Priodon from Macclesfield and M. cf. dubius from South Yarra; he also mentioned other occurrences. He thought the record of *Phyllograptus* (34) in New South Wales is doubtful.

He described and figured *Tetraraptus projectus* sp. nov. and *Trigonograptus wilkinsoni* sp. nov. He also commented on and figured *Didymograptus gracilis* Torn., *Leptograptus antiquus* T. S. Hall (now Bryograptus antiquus), *Didicograptus octonarius*, *Clonograptus tenellus* and *Bryograptus victoriae*.

1900.—W. S. Dun (41) recorded from the Coolgardie Gold Mine G.L. 14, Parish of Clarendon, County of Bathurst, New South Wales, at a depth of 150 feet, a number of specimens of *Diplograptus*. He could not say whether they were Ordovician or Silurian.

T. S. Hall (42) described and figured a number of graptolites from Mandurama, New South Wales, including *Climacograptus affinis* sp. nov. and *Diplograptus manduramae* sp. nov. The graptolites were associated with radiolaria and *Agnostus*.

1902.—T. S. Hall (43) considered that the evidence of transgression in the case of graptolites is somewhat stronger (than in other groups), and is more clearly seen, as the collecting in part of our (Victorian) Lower Ordovician has been done zonally. “I have elsewhere (39) shown,” he continues, “that on the same slabs of rock at Lancefield we find *Bryograptus* and *Clonograptus tenellus*, which in Europe are exclusively Cambrian, associated with *Didymograptus*, *Tetraraptus*, *Clonograptus flexilis*, *C. rigidus*, *Phyllograptus*, and two species of *Dictyonema* which are just as typically Lower Ordovician in Europe. In America *Clonograptus flexilis* is associated with such forms as occur at Bendigo, the next horizon above the Lancefield beds, which do not contain them, while *C. rigidus* is found with *Logonograptus logani*. Now, in Australia, the last named does not put in an appearance till the rich fauna of Bendigo and a great part of the Castlemaine series, which is younger than the Bendigo series, has disappeared entirely (cf. 131). Another example may be quoted. The group characterized by *Didymograptus bifidus* (cf. 151) ‘the tuning-fork graptolites,’ as they are sometimes called, is in Europe and America characteristic of the Upper Arenig, when the complexly branched forms, and the peculiar *Phyllograptus*, have died out. With us their horizon is lower and their range very short. *Phyllograptus*, *Clonograptus*, and *Dichograptus* long
survive them, while *Loganograptus logani* only puts in an appearance when they, in their turn, have almost passed away. Graptolites are not always easy of recognition, but these forms all belong to readily-recognizable groups; the specific determinations, it is possible, may be incorrect, but the generic cannot be confounded."

He recorded and figured (45) from Belle Vale, Yass, New South Wales, a *Monograptus* which he ascribed to the *M. dubius* group.

He described and figured (46) from Sandy's Creek, Mitchell River, *Didymograptus ovatus* sp. nov. and *Glossograptus hermani* sp. nov.

He tabulated the species already recorded from Upper Ordovician localities.

He recorded from Castlemaine, *Goniograptus macer, Didymograptus aff. nitidus* and *D. extensus*. From a locality 1½ miles south-west of Kelly's Hill, Matlock, he recorded *Dicellograptus morrisi, Diplograptus foliaceus* and other forms and assigns the beds to the Upper Ordovician.

He examined (47) the graptolites in the collection of the Geological Survey of New South Wales. From Stockyard Creek, he identified *Dicellograptus affinis, D. cf. divaricatus, Diplograptus carnei, D. foliaceus, Climacograptus bicornis, C. hastata, C. tubuliferus, Cryptograptus tricornis* (vide 63), and *Retiolites caudatus*; from Currawang, (?) *Dicellograptus affinis, Dicranograptus zic-zac var. minimus, Diplograptus foliaceus, Climacograptus bicornis and C. tubuliferus* (?) ; from Lawson, *Dicranograptus zic-zac var. minimus, Glossograptus cf. mucronatus* and *Clathrograptus cf. geinitzianus;* from Orange, *Diplograptus carnei;* from Tomingley, *Dicellograptus cf. divaricatus, Diplograptus carnei, D. foliaceus, D. cf. whitfieldi, Climacograptus tubuliferus, Callograptus cf. salteri, Dictyonema sp. and Dendrograptus spp.

He described and figured *Dicellograptus affinis* sp. nov., *Diplograptus carnei* sp. nov., *Climacograptus hastata* sp. nov. and *Retiolites caudatus* sp. nov. "Certain species identified from Victorian rocks by the late Sir F. McCoy," he said, "namely, *Diplograptus mucronatus* J. Hall, *D. rectangularis* McCoy and *D. palmeus* Barr. are not those species, the two latter, indeed, not occurring in Ordovician rocks at all, but being characteristic of Silurian age."

He discussed (48) the evidence for the existence of graptolites at a locality near the Ring River, north-east of Dundas Railway, and from near Zeehan, both in Tasmania.

1904.—T. S. Hall (51) recorded from slate pebbles at San
Remo the genera *Diplograptus, Climacograptus, Dicellograptus, Dictyonema, Callograptus* and *Ptilograptus*. He figured *Callograptus* and *Ptilograptus*.

From Knowsley East he recorded a form resembling *Ptilograptus*; from near the “trap” area marked on Q.S. 15 NE., near Vaughan, *Didymograptus bifidus, D. extensus* (?), *Tetragraptus quadribrachiatus, T. serra, T. fruticosus* (3-branched variety), *Phyllograptus typus*; from Wood’s Point District, *Dicellograptus affinis, Diplograptus foliaceus, D. cf. tamariscus, Climacograptus hastatus, C. tubuliferus, C. cf. innotatus*; from Bald Hill, Waratah North, *Diplograptus* sp.; and from boulders at Grice’s Creek, Mornington, *Climacograptus* and *Diplograptus*.

From Balnarring, he recorded *Tetragraptus approximatus, T. quadribrachiatus, T. fruticosus* and *Didymograptus cf. pritchardi*. This is the first record of *Tetragraptus approximatus* in Australia. From Bulldog Creek, near Dromana, he recorded *T. approximatus, T. quadribrachiatus, T. fruticosus*; from the junction of Stander’s Creek with the Goulburn River, near Wood’s Point, he recorded a form belonging to *Dendrograptus* or *Dictyonema*.

1905.—T. S. Hall (52) recorded from near Mt. Wellington, *Diplograptus thielei* sp. nov., *Climacograptus wellingtonensis* sp. nov., *C. bicornis, Cryptograptus tricornis, Lasiograptus sp., Dicellograptus elegans, Dicranograptus nicolsoni*, and *D. hians* sp. nov. He described and figured *Diplograptus thielei, Climacograptus wellingtonensis* and *Dicranograptus hians*.

1906.—T. S. Hall (53) recorded from Turquoise Mine, Ryan’s Creek, Myrhee, *Diplograptus* sp.; from Mt. Avis, *Edi, Diplograptus, Climacograptus, Glossograptus* and a doubtful *Didymograptus*. He regarded the beds as Upper Ordovician.

From Graptolite Gully, Jordan River, Aberfeldy District, on the track half-a-mile from the Thomson River junction, he recorded *Monograptus dubius* which he described and figured. From the northern slope of Mt. Easton he recorded *Dicellograptus affinis, D. elegans, Climacograptus tubuliferus, C. bicornis, Glossograptus fergusoni*; from Dingo Creek, *Dicellograptus affinis, D. cf. forchammeri* and *Diplograptus foliaceus*; a mile south from the Thomson-Jordan junction, *Monograptus cf. dubius*; from the Cornish Line of Reef, Daylesford, *Didymograptus bifidus, Tetragraptus quadribrachiatus, T. fruticosus, T. Bryonoides* and *Phyllograptus typus*; from the Little Snake Reef, Trentham, *Tetragraptus quadribrachiatus*; from The Springs, Daylesford, *T.
GRAPTOLITES OF AUSTRALIA

fruticosus, T. bryonoides, and Phyllograptus typus; from Bullarto, Didymograptus caduceus; from Bullarto railway-cutting, Phyllograptus angustifolius; from the spur between Boy's and Bell's Creek, on the track along the Thomson River, 4½ miles below the Jordan junction, Monograptus sp. and Pristiograptus; from the spur south-west of Blaze XIII, at Thomson River, 5½ miles from the Jordan junction, Monograptus sp.; from No. 10 spur on the Main Divide, between Spring Hill and Mt. Selma, Diplograptus sp.; from Black River, near junction of Ten Mile Creek, Dicranograptus sp., Diplograptus cf. murchisoni; from Bendigo, Concord Company's Lease, Tetragraptus serra, T. fruticosus (3 and 4-branched), Phyllograptus typus, from between Lansell's 180 Mine and Victoria Reef Mine, Tetragraptus fruticosus (3 and 4-branched), T. pendens, Dichograptus octobrachiatius; from Hustler's Line of Reef, Tetragraptus fruticosus (3 and 4-branched), T. approximatus, T. quadribrachiatius, T. bryonoides, T. serra, and Dichograptus octobrachiatius; from two miles north-west of Mt. Easton, Leptograptus flaccidus, Dicellograptus complanatus var. ornatus, Diplograptus carnei, Climacograptus mensoris sp. nov., and Retiolites caudatus; from three-quarters of a mile north-west of Mt. Easton, Leptograptus flaccidus, Dicellograptus elegans, Dicranograptus ramosus var. semispinifer nov., D. hians, D. nicholsoni, Diplograptus ingens sp. nov. D. foliaceus, D. cf. aculeatus, D. quadrimumcronatus, Cryptograptus tricornis, Climacograptus baragwanathi sp. nov. and C. bicornis. He described and figured Climacograptus mensoris, Leptograptus flaccidus, Dicellograptus elegans, Dicranograptus ramosus var. semispinifer, Diplograptus ingens, D. quadrimumcronatus, and Climacograptus baragwanathi. He figured Dicellograptus complanatus var. ornatus, Diplograptus carnei and Retiolites sp. He also commented on Diplograptus foliaceus, D. cf. aculeatus, Cryptograptus tricornis and Climacograptus bicornis.

1907.—T. S. Hall (56) recorded from the Painswick Railway Station ground, near Dunolly, (?) Bryograptus or Dendrograptus, (?) Clonograptus and (?) Tetragraptus decipiens; from Q.S. 22 NW., north-west of Mt. Easton, Dicranograptus ramosus var. semispinifer, Diplograptus ingens; from the railway quarry near the four and a half mile post, railway viaduct, Ingliston, Tetragraptus serra, Phyllograptus sp. and Didymograptus caduceus; from Ingliston, 42½ miles, in railway cutting, D. caduceus; from a site 100 chains distant on a bearing E. 35° 53' from the middle
of the Painswick Railway Station ground, near Dunolly, Tetragraptus decipiens, (?) Clonograptus magnificus, C. cf. tenellus, C. sp. and Bryograptus sp.; from Dunolly (No. 32 on Locality Map) Tetragraptus decipiens, Clonograptus tenellus and C. sp.; from a site 242 chains south from the SE. corner of Allotment A18, Parish of Moliagul, near Dunolly, Tetragraptus decipiens, Didymograptus pritchardi, Clonograptus magnificus, C. tenellus and Dietyonea macgillivrayi; from the Daylesford Mine Mullock Tip, Tetragraptus fruticosus, T. bryonoides, T. serra, Didymograptus bifidus and Phylograptus typus; from the Daylesford Shaft, quarter-mile south of the New Cornish Company’s Shaft, Didymograptus cf. extensus and D. caduceus; from Daylesford, north side of Jubilee Lake, quarter-mile east of railway station, Didymograptus caduceus and Dichograptus octobrachiatus; from near Dartmouth, four chains from battery in gully, Green’s Creek, Diplograptus cf. foliaceus; from Bald Hill quarry, Parish of Kangerong, east of Dromana, Didymograptus sp., D. cf. extensus, Tetragraptus pendens, T. cf. quadribrachiatus, and Clonograptus sp.; from south-east portion of Jamieson’s Special Survey, Parish of Kangerong, Tetragraptus approximatus, T. fruticosus and Clonograptus sp.

He identified (57) from several specified localities in the Dunolly district, Clonograptus tenellus, C. rigidus, C. magnificus, Tetragraptus decipiens, Didymograptus pritchardi; from the Jordan River, Diplograptus calcareus, D. tardus sp. nov., Climacograptus bicornis et var. peltifer, Crypto-graptus tricornis, Glossograptus cf. hermani, Dicellograptus elegans, D. sectans, Dicranograptus furcatus, D. ramosus et var. longicaulis, D. nicholsoni; from the Little Jordan Creek, Diplograptus tardus and Dicranograptus nicholsoni.

From certain specified localities on the Thomson River, Q.S. 22 NW., he recorded Monograptus cf. dubius, M. crenulatus, and M. sp. (colonus group); from Kangerong, Tetragraptus approximatus, T. fruticosus, T. quadribrachiatus, Clonograptus magnificus; and from specified localities at Bendigo, Tetragraptus quadribrachiatus, D. latus sp. nov., Tetragraptus fruticosus, T. serra, T. approximatus, Dichograptus octobrachiatus, Gonograptus thureau, Clonograptus flexilis and Phyllograptus typus. From Myrtleford he examined some fragmentary forms that he considered to be possibly a Bryograptus allied to B. victoriae.

He described and figured Diplograptus tardus and Didymograptus latus. He commented on and figured Diplo-
graptus calcarius, Glossograptus cf. hermani, Dicranograptus ramosus var. longicaulis, Didymograptus sextans and Climacograptus bicornis var. peltifer.

E. W. Skeats (58) found at Moorooduc at localities indicated on his map of the area, Didymograptus caduceus, Tetragraptus serra (sensu stricto), Diplograptus sp., Trigono- graptus sp., Lasiograptus sp. and Glossograptus sp. T. S. Hall, who identified these graptolites, states that "the horizon is that of the Upper Castlemaine series, although the presence of Glossograptus is suggestive of the horizon of the Darriwil series. The species of Diplograptus is similar to the one which occurs as low down as the Victoria Gully beds at Castlemaine, but is indistinct."

1908.—T. S. Hall (59) reported Didellograptus fragments from Myrtleford; from Kerrie, Riddell, Climacograptus sp.; from the Parish of Barp, Dictyonema and Dendrograptus; from the Parish of Painswick, Clonograptus magnificus (?), C. flexilis, Tetragraptus decipiens, Dichograptus octobra- chiatius, Dictyonema spp. and Phyllograptus typus (?); from the railway cutting between Goldsbridge and Bealiba, Clono- graptus cf. rigidus; from Allotment 14A, Parish of Tarnagulla, what appeared to be a Didellograptid; from the Parish of Wareek, Clonograptus gracilis, C. magnificus, C. rigidus, C. tenellus, Bryograptus probably victoriae, Tetragraptus decipiens and Leptograptus antiquus. This collection is interesting as being the most westerly yet found in Australia. From Bendigo, he identified Tetragraptus fruticosus, T. bryonoides, T. serra, T. pendens, Goniograptus thureaui, G. macer, Dichograptus octobrachiatius, Didymograptus exten- sus and Phyllograptus typus; from Daylesford, Tetragraptus fruticosus, T. pendens, T. quadibrachiatius, Didymograptus bifidus, D. caduceus, D. extensus, D. murchisoni, D. nitidus, Goniograptus macer, and Phyllograptus typus; from Dolly's Creek, three miles north-east of Elaine, Tetragraptus fruti- cosus, T. pendens, T. bryonoides, T. serra, T. quadibrachiatius, Didymograptus bifidus, D. caduceus, D. extensus, D. nitidus, D. extensus and Phyllograptus typus; from Marong, Tetragraptus fruticosus, T. bryonoides, T. serra, Phyllograptus typus, Didymograptus nitidus, D. bifidus, Goniograptus macer.

He corrects his identification of Retiolites caudatus from Mt. Easton (53) to Lasiograptus margaritatus Lapw.

T. S. Hart (61) collected graptolites at a number of localities at Daylesford. The greater part of the collecting was done between Sailor's Creek on the west, and the line of the Dry Diggings Road on the east, extending north and south over a distance of about six miles. He states that many of
the forms were examined and identified by T. S. Hall. Hart divided the area into three parts, a western area, west of the line of strike passing through the Ajax Mine, which belongs to the Bendigo Series; a central belt, with Bendigo beds on its west side and the Wattle Gully series farther east; and his eastern localities east of the Ballarat railway near Woodburn and eastwards from the Springs at Hepburn, all of which are referable to parts of the Castlemaine Series above the Wattle Gully beds.

From the western area he fixed a number of localities more or less precisely and refers to them by numerals from 1 to 13. From them he recorded *Tetragraptus fruticosus*, *T. bryonoides*, *T. pendens*, *T. quadribrachiatus*, *Didymograptus bifidus*, *D. cf. murchisoni*, *Goniograptus thureau*, *G. macer* and *Phyllograptus typus*. In the central area, he numbered his localities 14 to 43. He recorded from them *Didymograptus bifidus*, *D. extensus*, *D. cf. nicholsoni*, *D. caduceus*, *Tetragraptus bryonoides*, *T. serra*, *T. quadribrachiatus*, *T. fruticosus*, *Clonograptus abnormis*, *C. flexilis (?)*, *Phyllograptus typus* and *Dendrograptus sp.* (?). From the eastern localities numbered, 44 to 54, he recorded *Didymograptus caduceus* (large), *D. nitidus*, *Dichograptus octobrachiatus*, *Tetragraptus quadribrachiatus*, *Phyllograptus typus* and *P. angustifolius*.

In regard to these faunas he points out that there is—

1. A series of beds in which *Didymograptus caduceus* is abundant and sometimes large, associated with *Phyllograptus angustifolius* and *Didymograptus nitidus*, neither of which he found in other beds, and *Tetragraptus quadribrachiatus*, which also appears in other beds.

2. A series characterized by the extreme abundance of *Didymograptus bifidus*.

3. Beds with *Phyllograptus typus*, *Tetragraptus fruticosus*, and *T. bryonoides*.

In these beds *Didymograptus bifidus* is seldom present and never common. *Tetragraptus fruticosus* is never observed in beds in which *D. bifidus* is common.

4. At one locality with *Phyllograptus typus* and *Tetragraptus bryonoides*, *Clonograptus* was conspicuous, but neither *Tetragraptus fruticosus*, *Didymograptus bifidus* nor *D. caduceus* was noticed there.

This may be summarized as follows:

3rd, beds with abundant *Didymograptus caduceus*, newer than
2nd, beds with abundant *Didymograptus bifidus* and with *Phyllograptus typus*, newer than
1st beds with *Tetragraptus fruticosus* and *Phyllograptus typus*, the oldest beds observed.

This is in agreement with delimitations at Castlemaine, but Hart said that he had not collected in beds that can be decisively referred to that part of the series in which *Didymograptus caduceus* has begun to be common and *Phyllograptus typus* has not disappeared. On the other hand, there are apparently beds at Daylesford above the horizon at which *Tetragraptus fruticosus* ceases to be common but older than the beds with abundant *Didymograptus bifidus* which may be a local unimportant peculiarity. He tabulated the species records under the numbers of their localities and marked them on a transverse section.

T. W. E. David (62) recorded *Leptograptus* from a locality about two miles westerly from Berriedale, on the Kosciusko Plateau, New South Wales.

1909.—T. S. Hall (63) recorded from Tallong, New South Wales, *Dicellograptus elegans*, *Dicranograptus nicholsoni*, *D. hians* var. *apertus*, *D. cf. cyathiformis*, *Diplograptus*, *D. foliaceus*, *Climacograptus bicornis*, *Cryptograptus tricornis*, and *Glossograptus quadrimucronatus*.

He summarized (64) our knowledge of Victorian graptolites. He stated that *Tetragraptus approximatus* was an important zone fossil, being associated with both the lower part of the Bendigonian and the upper part of the Lancefieldian.

He examined a graptolite from Ballarat and considered it to be a *Dichograptid*, but otherwise indeterminate.

W. G. Woolnough (65) stated that an abundant and well preserved graptolite-fauna is present in the slates at Marulan and Tallong, New South Wales.

C. F. Laseron (66) exhibited *Diplograptus*, *Climacograptus* and *Dicellograptus* from a band of black slate in a creek crossing the Adaminaby Road, 11 miles from Cooma, New South Wales. He regarded the strata as a continuation of that of the Berriedale area.

1910.—F. Chapman (67) commented on graptolites from the Yarra Improvement Works, excavations made along the south side of the River Yarra, between Brander's Ferry and the South Yarra Railway Bridge. He stated that they "may be provisionally referred to as two types, which bear certain resemblances in the shape and width of the thecae to *Monograptus concinnus* Lapw. and *M. cyphus* Lapw."
1911.—R. Ruedemann (68) discussed the stratigraphic significance of the wide distribution of the graptolites and stated that "the closer investigation of the graptolites in Europe, America and in Australia has brought out the fact of the presence in all three continents of the common or guide graptolites, of the Ordovician at least, and of the general agreement of the sequence of zones. The distribution of an important fraction (roughly, at least one-third) is worldwide."

He cited the late appearance of *Loganograptus* in Australia (cf. 40, 131), and the Deep Kill beds of New York as evidence that "if new forms originated in one oceanic basin they so rapidly spread into the others that deposition of rock did not take place sufficiently quick to record this migration in the rock."

He then discussed the American graptolite zones in regard to their connections with the Atlantic and Pacific basins. "The principal Atlantic graptolites," he says, "are fully at home in the Pacific. We find, for instance, one horizon in Victoria, Australia, characterized by *Didymograptus bifidus* (cf. 151), *D. extensus* (?), *Tetragraptus quadribrachiatus*, *T. serrata*, *T. fruticosus*, *Dichograptus*, *Phyllograptus typus* and *P. sp.* and the fact that the differences in the time of appearance of some important forms between Australia and Europe (as the later appearance of *Loganograptus logani* and the earlier appearance of *Didymograptus bifidus* in Australia) are exactly duplicated in our Deep Kill Zones, and the appearance of *Goniograptus thurcaui* in both Australia and the Levis Channel are strong arguments not only in favour of some connection of the Levis basin with the Pacific Ocean, but even of the arrival of some of the forms of this far distant basin by a current from the west."

1912.—T. S. Hall (69), from the evidence then before him, fixes the age of the rocks at Marong as Bendigonian, the presence of *Didymograptus nitidus* indicating that they are not the lowest and the absence of "tuning-fork" graptolites, negative evidence of no great value, that the uppermost Bendigonian is not represented. Regarding the age of the rocks about Dunolly, he prefaces his remarks with a discussion of the characteristic fossils of the Bendigonian, viz.: *Tetragraptus fruticosus*, *T. pendens* and *Goniograptus thurcaui*. *Tetragraptus approximatus* is characteristic of the lowest part of the Bendigo Series and passes into older rocks below "while *T. serrata*, *T. bryonoides* and *Phyllograptus typus* range throughout, but also pass up into the higher series
of beds. Below the Bendigo series is found a series of rocks which are best studied at Lancefield, and are hence called Lancefieldian.”

The district to which his subsequent remarks apply extends westwards of Bendigo nearly to Bealiba, a distance of nearly 40 miles, and from near Maryborough northwards to Inglewood, a distance of about 25 miles. He considered the material from 40 localities, much of it “in an extremely poor state of preservation, so that in a large number of cases it was not possible to determine the fossils; still, from most localities, a sufficient number of identifications were made to fix the age of the beds approximately.”

From a couple of miles east of Bealiba to Laanecoorie the rocks appear to be entirely of Lancefieldian age and this has been proved north and south along their strike for 15 miles. About 15 miles north of the east and west Bendigo-Bealiba line is found at Inglewood, slightly to the east of the Laanecoorie strike Tetragraptus decipiens and Clonograptus sp., suggesting Lancefieldian and Tetragraptus approximatus hitherto only found in association with T. fruticosus at Bendigo and Dromana. “Its presence, then, may be taken to indicate on the one hand the top of the Lancefield, and, on the other, the base of the Bendigo series, and the two series pass into one another without a break.” He details the serial occurrences east and west of the Inglewood strike and the Bealiba-Laanecoorie belt and also those at Marong.

He concluded that “the age of the rocks about Dunolly, in the middle of the Bealiba-Laanecoorie belt, is Lancefieldian, then on the Inglewood-Campbelltown-Smeaton strike we reach the higher Bendigonian series. The eastward continuation of this, between Llanelly and Marong, is basalt masked, but Bendigonian is again met with at Marong, and possibly still farther to the eastward.”

He reported (70) on graptolites from Sebastian, which he placed in the Castlemaine Series (they are now known to belong to the Darriwil Series) and from several localities at Bendigo, Chewton, Dunolly, Bromley, Barp, Waanyarra, Goldsborough, Bet Bet, Tarnagulla, Elaine, Inglewood, Wedderburn (?), Moolort, Deep Creek (Parish of Bullarook), Eganstown, Wombat, Rocky Lead, and localities in the Parishes of Dean, Bullarook, Creswick, Smeaton, Clarendon, Painswick, Ballarat district, Woodend, Mansfield, Kevington district, Myrtleford district, Nowa Nowa, Mt. Wellington district, and Accommodation Creek.

He described and figured Trichograptus fergusoni sp. nov.,
GRAPTOLITES OF AUSTRALIA

DicrJiograptus octohracMatus, Clonograptus abnormis and C. sp.

1913.—In 1903 J. W. Gregory\(^1\) divided the Silurian of Victoria into two series, viz.: the Melbournian and the Yeringian, and Chapman (71) added the Tanjilian. From the Melbournian Chapman (71) recorded Dendrograptus sp., Monograptus cf. concinnus, M. cf. cyphus, M. cf. dubius, M. priodon; from the Yeringian, Cyrtograptus sp., Monograptus priodon, M. riccartonensis, and Retiolites australis; and from the Tanjilian (?) Cyrtograptus sp., Monograptus cf. eremulatus and M. dubius. N. R. Junner (74) found Climacograptus and Diplograptus in black, pyritic slates at the Diamond Creek Mine.

1914.—W. R. Browne (75) gave a list (supplied to him by C. F. Laseron) of graptolites found by the latter in Wambrock Creek, near Cooma, New South Wales. The list is more detailed than that previously given (66) and comprises Diplograptus foliaceus (very abundant), Climacograptus bicornis, C. hastata (very abundant), Dicellograptus elegans, D. caduceus, D. affinis and (?) Pleurograptus. He stated that Tetragraptus, Didymograptus and Diplograptus occur in slates at Geygedzerick Hill, 2\(\frac{1}{2}\) miles north-east of Berriedale, indicating the existence of the higher series of the Lower Ordovician in New South Wales. He also mentioned that C. F. Laseron had found in the neighbourhood of Cobargo, about 44 miles a little south of east of Cooma, Diplograptus foliaceus, Climacograptus, Dicellograptus, (?) gracilis and D. affinis.

T. S. Hall (76) described and figured Didymograptus extensus, D. perditus sp. nov., D. gracilis, D. aureus sp. nov., D. latens sp. nov., D. procumbens sp. nov., D. adamantinus sp. nov., D. mundus sp. nov., D. dilatans sp. nov., D. biijudus, D. caduceus var. manubriatus nov., Oncograptus gen. nov., O. upsilon sp. nov., Gonioograptus macer, G. speciosus sp. nov., G. crinitus sp. nov., G. laxus sp. nov., Tetragraptus hartii sp. nov., T. whitelawi sp. nov., Monograptus aplini sp. nov., M. turriculatus, M. priodon, Triacograptus neglectus gen. et sp. nov.

He reported (77) on graptolites from 11 localities in the Steiglitz District and 40 localities in the Bendigo District. Chapman (79) gave the stratigraphic subdivisions of the Lower Ordovician of Victoria, based on T. S. Hall's researches on graptolites (28). He also summarized the

Lower Ordovician of New Zealand, the Upper Ordovician of Victoria and New South Wales, and the Silurian of Victoria. He states that graptolites have been recorded from Tasmania, but that the horizon and the locality is uncertain.

He figures many of the better-known graptolites from the Ordovician and Silurian.

1915.—T. S. Hall (80) stated that the graptolite-bearing rocks of Victoria occupy about 20,000 square miles. The Upper Ordovician strata range north from eastern Victoria 300 miles into New South Wales. He expressed the opinion that the Victorian, not the British, sequence will be found in New Zealand. "Broadly," he continued, "the sequence of Australian graptolites agrees with the European, but in details is closer to that of New York, as Ruedemann has pointed out. The important differences in the range of *Didymograptus bidus*, *D. caduceus*, *D. nicholsoni*, *Loganograptus*, *Clonograptus rigidus* and some other genera and species negative the idea that graptolite zones are worldwide, and as no one believes that all the genera and species originated in one locality and radiated thence, this is what we should expect."

1916.—W. J. Harris (81) worked on an area in the Castlemaine District somewhat more extensive than that previously worked by T. S. Hall (28). He examined all but three or four of the outcrops visited by Hall and paid tribute to the accuracy of the latter's observations. He revised Hall's subdivisions of the Castlemaine and defined the Darriwil. The subdivisions proposed by Harris were as follows:

<table>
<thead>
<tr>
<th>Series and Division</th>
<th>Locality of Typical Development</th>
<th>Zone Fossils</th>
<th>Other Characteristic Fossils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darriwil (W. J. Harris and T. S. Hall) Upper</td>
<td>Guildford-Strangways Road</td>
<td>Glossograptus sp. indet.</td>
<td>Diplograptus cf. angustifolius.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trigonograptus</td>
<td>D. gnomonius sp. nov.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lasioograptus (absence of C. morsus)</td>
<td>Didymograptus caduceus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. v-deflexus sp. nov.</td>
</tr>
<tr>
<td></td>
<td>Middle Guildford-Strangways Railway</td>
<td>C. morsus</td>
<td>Diplograptus gnomonicus sp. nov.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trigonograptus (absence of Oncograptus)</td>
<td>Didymograptus caduceus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. v-deflexus sp. nov.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phyllograptus sp.</td>
</tr>
<tr>
<td>Series and Division</td>
<td>Locality of Typical Development</td>
<td>Zone Fossils</td>
<td>Other Characteristic Fossils</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Lower</td>
<td>Chinamen's Creek</td>
<td>C. morsus</td>
<td>Diplograptus gnomonicus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oncograptus</td>
<td>Didymograptus caduceus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trigonograptus</td>
<td>D. v-deflexus sp. nov.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phylograptus sp.</td>
</tr>
<tr>
<td></td>
<td>Woodbrook Road</td>
<td>Oncograptus</td>
<td>Didymograptus caduceus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>upsilon</td>
<td>D. v-deflexus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trigonograptus</td>
<td>Phylograptus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(absence of C. morsus)</td>
<td>Didymograptus caduceus var. manubriatus</td>
</tr>
<tr>
<td>Castlemaigne Upper</td>
<td>McKenzie’s Hill</td>
<td>Didymograptus</td>
<td>Didymograptus spp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>caduceus (max. dev.)</td>
<td>Diplograptus spp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loganograptus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Victoria Gully</td>
<td>Didymograptus</td>
<td>Dichograptus cf. octonarius</td>
</tr>
<tr>
<td></td>
<td></td>
<td>caduceus</td>
<td>Diplograptus spp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(absence of Phyllograptus typus)</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>Victoria Gully East</td>
<td>Didymograptus</td>
<td>Dichograptus cf. octonarius</td>
</tr>
<tr>
<td></td>
<td></td>
<td>caduceus (small)</td>
<td>Clonograptus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phyllograptus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burns Reef</td>
<td>P. typus</td>
<td>Clonograptus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(absence of D. bifidus)</td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>Wattle Gully</td>
<td>D. bifidus (absence of Tetragraptus fruticosus)</td>
<td>Phylograptus typus P. cf. angustifolius</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dichograptus octobrachiatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clonograptus spp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Goniograptus crinitus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetragraptus pendenst</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T. similis</td>
</tr>
<tr>
<td>Bendigo Upper</td>
<td>Daphne Reef</td>
<td>Tetragraptus</td>
<td>As in Wattle Gully Beds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fruticosus (3-branched)</td>
<td>and Goniograptus macer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G. thureani</td>
</tr>
<tr>
<td>Middle</td>
<td>South Fryers-town Race</td>
<td>Tetragraptus</td>
<td>Goniograptus macer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fruticosus (4-branched)</td>
<td>Tetragraptus pendenst</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T. similis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phylograptus cf. typus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Didymograptus latus</td>
</tr>
</tbody>
</table>
He recorded beds of the Darriwil Series "as previously constituted," for the first time from the Castlemaine District. He extended the meaning of the term Darriwil to include not only the beds hitherto placed in it by T. S. Hall, but beds in the district between them and the Upper Castlemaine (Logano-caduceus) zone all of which he had found in the Darriwil district. He retained the Castlemaine Series as fixed by T. S. Hall although to him the two zones of the Middle Castlemanian are not always distinguishable. He divided the Bendigo beds at Castlemaine into two, one characterized by the three branched *Tetragraptus fruticosus* and the other by the four-branched. He stated that *T. fruticosus* (three-branched) and *Didymograptus bifidus* are found associated at Tarilta and other places. He defined his new conception of the Darriwil, the nature of its facies, its stratigraphical position, particularly in regard to the evidence afforded by the development of *Didymograptus caduceus* in both the Darriwil and Castlemaine Series, transitional beds and subdivisions.

He published a zone map and sections, also figures of *Cardiograptus morsus* gen. et sp. nov., *Diplograptus gnomonius* sp. nov. and *Oncograptus biangulatus* sp. nov.

1918.—F. Chapman (82) described some hydroid remains belonging to the Calyptoblastea from black slate or shale, two miles east-north-east of North Monegeeta, south of Romsey. He inferred from the presence of *Acrotreta antipodium* that the beds were probably of similar age to the Lancefieldian of the Mt. William and Lancefield districts.

1919.—E. O. Teale (83) found in the Howqua River area graptolites on either side of the main diabase area there. On the western side, only Upper Ordovician (*vide* 156 post) and, possibly, Silurian graptolites occur. He searched assiduously where the *Monograptus* identified by T. S. Hall was stated to have been found, but did not find a single specimen of that genus, though hundreds of forms of less restricted range, chiefly *Climacograptus* and *Diplograptus* and probably *Glosso-ograptus* were obtained.

On the eastern side, in thin black slates, he obtained *Tetragraptus* and *Didymograptus*, indicating a Lower Ordovician horizon. Some distance upstream from the last locality, a few chains west of Eight-mile Creek, he found indistinct graptolites, suggesting *Diplograptus* and *Climacograptus*.

The same author gave (84) a useful synoptic table of Upper Ordovician assemblages recorded from Victoria. He added to the list from Mt. Wellington (52) *Diplograptus foliaceus,*

F. Chapman and E. W. Skeats (85) published what is largely a duplication of Chapman’s paper (82) on the hydroids from North Monegeeta. They state that somewhat similar branching forms occur with Dinesus ida and other trilobite remains probably of Cambrian age near Heathcote, 30 miles to the north.

1920.—T. S. Hall (86) added to his list (63) of the Upper Ordovician forms from Tolwong (vide 159 post), New South Wales, Leptograptus flaccidus, Dicellograptus complanatus et var. ornatus, D. morrisi, D. cf. caduceus, Dicranograptus ramosus var. semispinifer, D. hians, Climacograptus caudatus var. wellingtonensis, C. cf. tubuliferus, Diplograptus theilei, D. linearis, Glossograptus sp., Lasiograptus (Neurograptus) cf. fibratus, (?) Retiograptus geinitzianus and Retiolitidae fragt. He added notes on Diplograptus (M.) linearis, Climacograptus tubuliferus and C. caudatus var. wellingtonensis.

R. A. Keble (87) described and figured Tetragraptus approximatus Nich., T. acclinans sp. nov. and T. decipiens T. S. Hall.

A. V. James (88) gives Upper Ordovician and Silurian graptolite localities on his map of the Bulla-Sydenham area in addition to those indicated on Quarter Sheets 1 NW., 7 SE.

No specific determinations of the graptolites he obtained from them are given.

1921.—L. F. Harper (89) recorded from Yalgogrin, New South Wales, Climacograptus hastatus, Dicellograptus cf. affinis and fragmentary forms comparable with D. caduceus.

W. J. Harris and W. Crawford (90) published lists of graptolites obtained from numerous specified localities in the Gisborne District. They represent collections from the Bendigo, Castlemaine and Darrwil Series and the Upper Ordovician. Dicellograptus smithi was recorded for the first time in Victoria.

A tentative recognition of three Upper Ordovician graptolite zones was proposed:

1. Diplograptus-Didymograptus Zone (lowest).
2. Dicellograptus Zone.
3. Dieranograptus Zone.

They stated that the Riddell Grits overlie the Dicranograptus shales (Upper Ordovician) and they underlie the
Kerrie Conglomerate. They suggested that the age of the Kerrie Conglomerate is basal Silurian.

1923.—T. S. Hall (91) recorded from Phosphate Hill, Mansfield, *Tetragraptus decipiens* and *T. approximatus*.

R. A. Keble (92) recorded the same species from Phosphate Hill, Mansfield, and placed them in the Upper Cambrian in conformity with American stratigraphy.

H. Herman (93) published zone maps and sections of the Bendigo Goldfield based on a subdivision of the Bendigo Series published therewith.

H. S. Summers (95) listed the graptolites from the Bacchus Marsh and Coimadai District and he (96) reviewed the evidence for the age of the Kerrie Conglomerate and gave lists of graptolites from Allot. 20, Parish of Newham; Allot. 5, Parish of Macedon; and Allot. 48a. 109 and 114, Parish of Kerrie.

E. W. Skeats (97) gave faunal lists in the Lancefield and Romsey districts. Most of the species had already been recorded (23, 24, 27, and 39). From the Bendigo Series, however, on the northern boundary of Allot. 49, Parish of Goldie, he recorded *Tetragraptus fruticosus* (3 and 4 branched), *Goniograptus macer* and *Phyllograptus*. In the railway cutting two miles east of Kilmore Gap he recorded Silurian species and he stated that *Monograptus* had been found two miles south-east of the cutting.

1924.—W. J. Harris (98) described and figured *Didymograptus v-deflexus* sp. nov., *Lasiograptus (Thysanograptus) etheridgei* sp. nov., *Retiograptus speciosus* sp. nov., *Climacograptus riddellensis* sp. nov., *Glossograptus hincksii*, *Didymograptus (Isograptus) caduceus*. He described and commented on *Cardiograptus* gen. and *C. morsus* sp., *Oncograptus biangulatus*, *Diplograptus gnomonicus*, *Trigonograptus ensiformis* and *Thamnograptus capillaris*.

Diplograpsus mucronatus (13) was relegated to the synonymy of *Lasiograptus (T.) etheridgei*, *Diplograptus rectangularis* (14) to *Climacograptus riddellensis* and *Diplograpsus mucronatus* (14) to *Glossograptus hincksi*.

F. Chapman (99) gave a systematic list of Tanjilian fossils in which he includes *Cryptograptus* sp., *Monograptus cf. crenulatus*, *M. (?) dubius* (“in Jordan River series”) and *M. cf. jackeli*. In regard to this list he adds the following note: “doubtfully included here. Occurring in the typical Walhalla Series, and high in that series, plant remains occur.” (*Cryptograptus* is probably written in error for *Cyrtograptus.*)
In some critical remarks on the flora and fauna, he states: "Graptoloidea have been reported on by the late Dr. T. S. Hall. Some of the forms are rather high in the series, as compared elsewhere, and on account of their indifferent preservation, may require revision. Besides the first three on the list, determined by Dr. Hall, I have found the predominant graptolite supposed to belong to the Wallhalla plant-bearing beds, to be a form related to Monograptus cf. jackeli Perner, of the M. priodon type. Dr. T. S. Hall's plesiotypes of M. dubius, which have been examined by Mr. W. J. Harris and myself, belong to a form of the M. priodon type."

1925.—R. A. Keble (101) recorded from Allot. 28, Parish of Langwarrin Climacograptus sp., probably of Upper Ordovician age; from the Howe's Creek Phosphate Mine, in a trench on Allot. 113a, Parish of Loyola, Monograptus leptotheca, M. mcCoyi, M. cf. cutellus, M. cf. proteus, M. spp. nov., Climacograptus sp., Diplograptus sp., and Retiograptus sp. He regarded the age as equivalent to the Llandovery of Britain.

From a locality north of Greendale he recorded Didymograptus aureus, Tetragraptus fruticosus (4 and 3 branched), T. bryonoides, T. cf. quadribrachiatu s, T. cf. acclinans, Dichograptus octobrachiatu s, and Gonioegraptus laxu s.

From the Lerderderg River, between the river and the headwaters of Rum Creek, Parish of Blackwood, he recorded Didymograptus aureus, D. latens, D. extensus, Tetragraptus fruticosus (4 branched), T. pendens, T. decipiens, T. harli, T. serru and Phyllograptus angustifolius.

R. A. Keble and W. J. Harris (102) recorded a number of species from Mt. Easton (incorrectly referred to as Eastern). Diplograptus calcaratus var. vulgatus and Leptograptus capillarius were recorded for the first time in Victoria. They described and figured Climacograptus missilis sp. nov., C. exigus sp. nov., Leptograptus flaccidus var. subjectus nov., L. eastonensis sp. nov. and Dicellograptus gravis sp. nov. They show in a table the relative position of the Mt. Easton beds in relation to the British Zones.

W. Baragwanath (104) adopted the following provisional classification of the Silurian in the Aberfeldy District:

Upper Silurian

Walhalla Series.
Jordan River (and Donnelly's Creek) beds.

Lower Silurian

Mt. Useful beds.
He collected graptolites from a number of places in the area which were submitted to T. S. Hall for identification. He obtained *Monograptus* in black slates in the valley of the Thomson for half a mile above the Jordan-Thomson River junction. Regarding these graptolites he quotes T. S. Hall, who states that "*Monograptus* seems to be the only genus represented, and, as far as the material allows of careful examination, only one species is present. With some hesitation, owing to the imperfection of the material, I identify this as *M. dubius* Suess..." From a spur one mile south of the Thomson-Jordan junction, Hall identified *M. cf. dubius* and *M. sp.* Commenting on the forms from a spur between Little Boy's and Bell's Clear Creek, he remarked on their poor preservation and that they appeared to belong to the sub-genus *Pristiograptus.* Certain specimens had thecae of the "*priodon*" type. The forms from a spur a mile south of the last locality were likewise inconclusive.

From a locality near the last one, two specimens (Nos. 547 and 548) submitted to him provoked considerable comment. "No. 547," Hall says, "is a *Monograptus*, and is therefore a Silurian form, whereas No. 548 is a *Didymograptus*, having the aspect of *D. caduceus*. The cast of the sicula can be clearly seen, and the reverted apertural denticles of the thecae are visible. Of the generic position of the fossil there can be no question. The matrix, an indurated micaceous mudstone, appears the same as that of many of the other specimens from the same spur, but I feel convinced that the presence of the Lower Ordovician type in association with *Monograptidae* is an error due to human agency. With the exception of this fossil, the whole of the rest of the fossils (Nos. 522-538 and 547) are of Silurian age."

To this he added a footnote. "In face of Mr. Baragwanath's personal assurance that there was no confusion of localities in these two specimens, but that both came from the same block of stone, I have requested permission to re-examine them. I see no reason to alter my opinion as to their generic position. I have, moreover, explained the case to Mr. F. Chapman, A.L.S., and he has examined the supposed *Didymograptus*. He allows me to say that he agrees with my identification. Further specimens are urgently required from this locality as the inferences to be drawn are too important to rest on a couple of very indistinct fossils."

In view of the above, a further search was made in the same place and from the resulting specimens, T. S. Hall identified *Monograptus cf. dubius* Suess, *M. cf. crenulatus* Torn. (genus
GRAPTOLITES OF AUSTRALIA

Monoclimacis Frech, *M.* sp. (*colonus* group), *M.* sp. and (?) *Monograptus* or *Cyrtograptus*.

From the Thomson River valley at a blazed tree, 23 chains south of the southern boundary of the map, Hall identified *M.* cf. *dubius*, and *M.* sp.

The graptolites from the Upper Ordovician have been reviewed (53, 56, 102).

1926.—W. J. Harris (105) described and figured *Didymograptus nodosus* sp. nov., *Cardiograptus crawfordi* sp. nov., *Cryptograptus tricornis*, *Atopograptidae fam. nov.*, *Atopograptus gen. nov.*, *A. woodwardi* sp. nov. He commented on an assemblage from a locality north of Gisborne and one at Bendigo East, both high in the Lower Ordovician and possibly the highest yet recorded.

1927.—O. A. Jones (107) recognized the presence of *Monograptus chiwaera*, *M.* *colonus*, *M. romeri* and *M. varians* at Studley Park, Melbourne. He showed that they indicated an horizon equivalent to that of the *M. nilssonii* Zone of the Lower Ludlow and were younger than the graptolites recorded from South Yarra, Macclesfield and Keilor.

1928.—R. A. Keble (108) examined two of the slabs from the Ring River, Tasmania, previously examined by T. S. Hall (48) and recorded a Dichograptid fragment, (?) *Tetragraptus* sp., (?) *Leptograptus* sp., (?) *Syndyograptus* sp.

W. J. Harris and R. A. Keble (109) described and figured *Staurogaptus diffissus* sp. nov., *Dictyonema campanulatum* sp. nov., and *D. scitalum* sp. nov., from a band of blue slate at Lancefield. They regarded the bed as the oldest graptolite-bearing bed yet found in Australia and later (121) placed it at the base of the Ordovician.

E. W. Skeats (110) reviewed the field evidence regarding the occurrence of Silurian and Ordovician rocks in the Walhalla-Woods Point District where Etheridge had noted traces of primitive plants in marine shales. As a result of the detailed study of the district by Herman, Whitelaw, Jumner, and Baragwanath, the Silurian formations had been divided into the Lower (Mt. Useful), Middle (Jordan

River) and Upper (Walhalla) divisions. The Jordan River beds had been held by Junner* to contain Monograptus in the lower portion of the Penenka shales with plant remains in the upper portion, while others were of the view that the plants were contained within graptolite bearing beds. Chapman' expressed doubts concerning this and believed that the plant-bearing Penenka shales were actually of Lower Devonian age, and rested on the Walhalla beds, in the lower portion of which was a Yeringian or Upper Silurian fauna. Skeats, however, confirmed the inferior position of the plant-bearing beds in regard to the Walhalla series, and confirmed the reported association of plants and graptolites in the Jordan River shales. An illustration of this was afforded by Keble (128) who identified a graptolite that occurred on the same slab as plants as Monograptus riccartonensis and relegated the series to the Zone of M. riccartonensis of the lower Middle Silurian of Britain. Subsequently a more extensive series of forms were studied by Elles (139) who referred them to the M. nilssoni Zone of the European early Upper Middle Silurian. The associated Psilophytales were described by Lang and Cookson (139).

1929.—R. A. Keble and W. N. Benson (111) published a correlation table showing that the graptolite succession in North-west Nelson, New Zealand, agreed with that in Australia. They described and figured a number of new species, some of which have since been found in Australia.

O. M. B. Bulman (112) published a useful paper dealing with the genotypes of graptolite genera. His comments in regard to Australian genera are as follows:

"Atopograptus, Harris, 1926, p. 59, genotype A. woodwardi." (vide 105.)

"Cardiograptus, Harris & K., 1916, genotype C. morsus Harris & K. Possibly referable to Phyllograptus Hall." (vide 81.)

"Goniograptus, McCoy, 1876, genotype, Didymograptus thureaui McCoy." (vide 17.)

"Oncograptus, T. S. Hall, 1914, genotype, O. upsilon, T. S. Hall. Possibly best regarded as a subgenus of Didymograptus, McCoy." (vide 76.)

"Triaenograptus, T. S. Hall, 1914, genotype T. neglectus, T. S. Hall." (vide 76.)

E. W. Skeats (113) recorded graptolites from Tabberabbera at localities indicated on his map of the area.

1930.—W. J. Harris and R. A. Keble (114) identified from

W. S. Dun (115) stated that certain areas at Narrandera, New South Wales, regarded as Devonian, were Ordovician, containing *Diclograptus*. He thought that most of the Palaeozoics between Narrandera and Albury were of Ordovician age.

1931.—W. R. Browne (116) recorded *Diplograptus* (? *Climacograptus*) *bicorns* from a locality south of Cooma, New South Wales.

O. M. B. Bulman (117) described and figured a number of species from South America. Commenting on the multiramous *Dichograptids* and the *Phyllograptids* having such a high stratigraphical position in South America, he pointed out that the discrepancy is less when comparison is made with the Lower Ordovician faunas of eastern North America and Australia than with those of Europe. In regard to T. S. Hall's remark (40) that secondary branches of *Goniograptus macer* give off tertiaries on alternate sides, he said that an alternative is that *G. macer* is only an abnormal and incomplete example of what he terms *Loganograptus logani* var. *kjerulfii*.

He described *Dichograptus octobrachialis* var. that resembles the form described by McCoy in 1874 (14). He also described and figured under *Didymograptus* (*Isograptus*) *caduceus* Salter, emend. var., a form comparable with the large V-shaped *D. caduceus* recorded by Harris (81).

1932.—G. L. Elles (119) published, with T. W. Edgeworth David's explanatory notes to accompany a new geological map of the Commonwealth of Australia, a correlation table of Australian with extra-Australian graptolite zones. She correlated the Australian Zones with what she considered their British, and American serial and zonal equivalents. She gave what she considered the Australian equivalents of many British species. T. W. Edgeworth David stated that G. L. Elles believed that the sequence of graptolite zones in Australia was practically the same as that in Europe.

R. A. Keble (120) published, with T. W. Edgeworth David's notes, a synoptic table of the Victorian Lower Ordovician graptolite zones and a table in which the Darriwil, Castlemaine, Bendigo and Lancefield Zones were elevated to series each of which was subdivided into five zones. Typical zone localities, restricted and common zone fossils are given. T. W. E. David said that Keble considered "that the graptolo-
lite succession of Australia differs from that of Europe, and more closely resembles that of America, where, in the opinion of Ruedemann, the succession differs from that of Europe. T. W. E. David (118) deals with the Upper Ordovician rocks at Omce and Mitta Mitta in Victoria which he states pass into New South Wales where, he says, they "lie in several parallel belts, of which the most easterly nearly follows the coast line to Batman's Bay, and thence perhaps trends inland to Tallong, near Marulan. The rich gold-bearing saddle-reefs of Hargreaves traverse Upper Ordovician rocks. The most westerly belt as yet proved strikes from the Forbes-Parkes area to Tomingley and Myall Reefs, also a gold-bearing zone."

He defines the limits of the Ordovician sea and the direction of the old shore-line. "East of this shore-line," he says, "there is a great development of Ordovician rock of a pelagic graptolite type belonging to this sea. These extend southward into Tasmania and northward into New South Wales right up to the Queensland border. This sea, probably continuous with the Larapintine Sea, spread over much of eastern Queensland as well, but so far no fossils have been found belonging to the eastern extension of the sea, except in the south-east extremity of the State, near Point Danger. There a Diplograptus has been identified in the local Brisbane schists, which there belong to either the top of the Ordovician (?) Bunya Series or to the base of the Silurian (?) Neranleigh Series. A long intermittent belt of Upper Ordovician rocks, characterized by veins of turquoise and other hydrous phosphates, extends from the Ovens River, Victoria, through Bodalla and Murwillumbah in New South Wales, the Neranleigh and Bunya Series of Brisbane, and the cherts of Gladstone and Yeppoon, to Innisfail, south of Cairns, Queensland. The uniform character of this phosphate zone suggests a more or less continuous development of Upper Ordovician rocks, along the eastern sea-board of Australia, for the distance of about 1,700 miles."

In regard to the Silurian, he gives a tentative correlation of the Silurian rocks of the Commonwealth. The graptolite assemblages of Victoria are, for the "Studley Park Bed," Monograptus nilssonii and M. colonus; the "Jordan Series," M. priodon, M. dubius, Retiolites australis; the "Keilor Beds" (upper part), Monograptus riccartonensis; the "Keilor Beds" (lower part), M. turriculatus, M. exigus, M. aplini; the "Mount Useful Series" of the Walhalla Geosyneline, M. convolutus. He records Monograptids in the Hume Beds of
New South Wales and *Diplograptus* sp. in the Neranleigh Series of the Brisbane Series, an occurrence that he assigns to an horizon about the Valentinian of Britain.

Third Period: 1932 to Present.

This may be termed the period of systematization. In 1932 the graptolite fauna was well enough known to subdivide the Lower Ordovician strata into series and zones, but the problem confronting systematists was where to fix their limits. It was known that the zones as constituted by T. S. Hall had not been based on the best principles of zoning, but it was difficult to adjust them without causing confusion. In 1932 W. J. Harris and R. A. Keble (121) systematized the subdivision of the Lower Ordovician largely on the basis laid down by T. S. Hall. They elevated his zones to series and subdivided each of these series into five zones.

W. J. Harris (138) suggested a further subdivision of the Darriwil, and he and D. E. Thomas (157) revised the subdivisions of all previous workers and added new series.

1932.—The systematization of the Victorian Lower Ordovician succession by W. J. Harris and R. A. Keble (121) is as follows:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Typical Locality</th>
<th>Zonal Species</th>
<th>Associated Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Bendigo East</td>
<td>Didymograptus nodosus, Atopograptus woodwardi, Brachiograptus etaformis</td>
<td>Cardiograptus crawfordi, Climacograptus, Didymograptus caduceus (rare), Phyllograptus nobilis, Lasiograptus, Glossograptus, Diplograptus, Cryptograptus tricornis, Trigonograptus ensiformis, Tetraraptus quadribrachiatus</td>
</tr>
</tbody>
</table>

D2 Loc. 7SZ Geol. Surv. Vic. Sutherland’s Creek Steiglitz

| D2 | Loc. 7SZ Geol. Surv. Vic. Sutherland’s Creek Steiglitz | Diplograptus austrodentatus | D. caduceus, Trigonograptus, Glossograptus, C. tricornis, Tetraraptus |

D3 Castlemaine-Maryborough Railway W. of Strangways

| D3 | Castlemaine-Maryborough Railway W. of Strangways | Cardiograptus morsus | D. caduceus, D. v-deflexus, Tetraraptus, Phyllograptus, Diplograptus gnomonicus, Trigonograptus |
Zones

<table>
<thead>
<tr>
<th>Zone</th>
<th>Typical Locality</th>
<th>Zonal Species</th>
<th>Associated Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>Chinamen's Creek, Muckleford</td>
<td>Cardiograptus morsus</td>
<td>D. caduceus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oncograptus</td>
<td>D. v-deflexus, Trigonograptus, Phyllograptus, Tetrargaptus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strophograptus trichomanes, D. gnomonicus</td>
</tr>
<tr>
<td>D5</td>
<td>Castlemaine-Walmer Rd. E. of borough Boundary, Castlemaine</td>
<td>Oncograptus upsilon</td>
<td>Much as in D4, D. forcipiformis, Goniograptus speciosus</td>
</tr>
</tbody>
</table>

CASTLEMAINE SERIES.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Typical Locality</th>
<th>Zonal Species</th>
<th>Associated Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>McKenzie's Hill, Castlemaine, water race in paddock N. of Castlemaine-Maldon Rd.</td>
<td>D. caduceus (maximum development)</td>
<td>Loganograptus logani, Diplograptus sp., Didymograptus uniformis, Tetrargaptus quadribrachiatus</td>
</tr>
<tr>
<td>C2</td>
<td>Victoria Gully, Castlemaine</td>
<td>D. caduceus (sub-maximal development)</td>
<td>Diplograptus sp., Didymograptus spp., Dendroid forms, Dichograptus cf. octonarius</td>
</tr>
<tr>
<td>C3</td>
<td>Victoria Gully, east of the Type locality of C2</td>
<td>D. caduceus (small forms)</td>
<td>Phyllograptus cf. typus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparatively few</td>
</tr>
<tr>
<td>C4</td>
<td>Burns Reef, Chewton</td>
<td>P. cf. typus</td>
<td>Comparatively rare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. caduceus (small and rare)</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>Wattle Gully, Chewton</td>
<td>D. bifidus</td>
<td>D. caduceus (small), Clonograptus spp., D. octobrachiatus, Phyllograptus, Goniograptus laxus, G. crinitus, Tetrargaptus similis, T. pendens</td>
</tr>
</tbody>
</table>

BENDIGO SERIES.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Typical Locality</th>
<th>Zonal Species</th>
<th>Associated Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Paddy's Gully, Bendigo</td>
<td>Tetrargaptus fruticosus 3-br.</td>
<td>D. octobrachiatus, Phyllograptus cf. typus, Clonograptus abnormis, Tetrargaptus similis, T. quadribrachiatus, G. laxus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. bifidus</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>Napoleon Syncline, Bendigo</td>
<td>T. fruticosus 3-br.</td>
<td>Much as in B1, Didymograptus similis, Goniograptus thureaudi, D. extensus</td>
</tr>
</tbody>
</table>
GRAPTOLOGITES OF AUSTRALIA

<table>
<thead>
<tr>
<th>Zone</th>
<th>Typical Locality</th>
<th>Zonal Species</th>
<th>Associated Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>Red, White and Blue Reef, Bendigo</td>
<td>T. fruticosus 3-br. and 4-br.</td>
<td>Didymograptus dilatans, D. extensus, Goniograptus thureaui, T. pendens</td>
</tr>
<tr>
<td>B4</td>
<td>Garden Gully, Bendigo</td>
<td>T. fruticosus 4-br.</td>
<td>T. similis, T. serra, Clonograptus spp.</td>
</tr>
<tr>
<td>B5</td>
<td>Hustler's Hill, Bendigo</td>
<td>T. fruticosus 4-br.</td>
<td>D. aureus, T. decipiens, T. quadribrachiatuus, T. acclinans, Loganograptus logani, Clonograptus tenellus</td>
</tr>
</tbody>
</table>

LANCEFIELD SERIES.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Typical Locality</th>
<th>Zonal Species</th>
<th>Associated Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Bull Dog Creek, Mornington Peninsula</td>
<td>T. approximatus</td>
<td>T. decipiens, T. quadribrachiatuus, T. acclinans, C. tenellus</td>
</tr>
<tr>
<td>L2</td>
<td>Lancefield, near Deep Creek</td>
<td>Bryograptus victoriae, T. decipiens</td>
<td>Clonograptus tenellus</td>
</tr>
<tr>
<td>L3</td>
<td>Lancefield Quarry, N.E. of Old Mt. William Railway Station</td>
<td>Dictyonema macgillivrayi, B. victoriae</td>
<td>T. decipiens, Clonograptus spp., Didymograptus pritchardi, D. taylori</td>
</tr>
<tr>
<td>L4</td>
<td>North east of Romsey</td>
<td>Dictyonema campanulatum, D. scitulum, Staurograptus diffissus</td>
<td>No associates have been found</td>
</tr>
<tr>
<td>L5</td>
<td>Not yet recognized in Victoria</td>
<td>(Dictyonema)</td>
<td></td>
</tr>
</tbody>
</table>

Commenting on the limitation of the Bendigo Series by the advent and extinction of *Tetragraptus fruticosus*, they say that “before dealing with each series and its zones in detail attention may well be called to a point which is of importance in all attempts at zoning, and which has been well expressed by Dr. Elles.¹ That experienced graptolithologist, from her extended study of British graptolite zones, writes: ‘some commingling at the boundaries of the zones must naturally

be expected, especially when dealing with the succession of purely shaly deposits, but as a rule even then the coming in of new forms in abundance should be taken as an index of the passage to a higher horizon. This fact is one upon which great emphasis should be laid; it is upon this, the coming in of new forms, usually indicative of a more advanced stage in evolution, that the basis of modern zonal stratigraphy is laid; the persistence of old forms tends to vary greatly in different localities. There does not appear to be any justification for action which results from focusing too much attention upon the index fossil rather than upon the assemblage, which is the determining factor.'"

A short history of graptolite research was published and a correlation of the Victorian zones with those in the Northern Hemisphere. They described and figured Diplograptus (Glyphograptus) austrodentatus sp. nov., Phyllograptus nobilis sp. nov., Didymograptus forcipiformis, D. dependulus sp. nov., Brachio-
graptus etaformis gen. et sp. nov., and Goniograptus palmatus sp. nov.

E. A. Ripper (122) indicated the distribution of the zones of the Castlemaine and Darriwil Series at Inglis ton, near Bacchus Marsh. She found in the Darriwil Series Zone D2 characterized by the zone fossil Diplograptus austrodentatus, Glossograptus sp. and absence of Cardiograptus morsus; D3, characterized by C. morsus and the absence of Oncograptus; D4, with Cardiograptus morsus and Oncograptus sp.; D5-4, with Oncograptus biangulatus and O. upsilon and D5 with O. upsilon and the absence of Cardiograptus. In the Castle-
maine Series she found Zone CI with Didymograptus caduceus (maximum development) and Oncograptus absent.

She published detailed maps and sections.

D. E. Thomas (123) gave lists of graptolites from Lower and Upper Ordovician localities in the area to the north and north-west of Riddell and including parts of the Parishes of Kerrie, Monegeeta and Rochford. The localities are indicated by symbols on the map published with the paper. He records for the first time in Australia Diplograptus (Amplexo-
graptus) cf. arctus, D. cf. pageanus, Climacograptus minimus, C. putillus cf. mut. eximius and Dicellograptus forchhammeri var. flexuosus.

1933.—D. E. Thomas and R. A. Keble (126) published a comprehensive paper on the Bulla-Sunbury area and discussed the Silurian sequence in the Melbourne area. They outlined the history of ideas concerning the Silurian and
Ordovician systems and incidentally explained McCoy's conception which guided his investigations on Victorian Palaeozoic fossils when he was appointed Palaeontologist to the Geological Survey of Victoria in 1856 and during the next three decades. They also gave a number of sections and lists of fossils from localities indicated by numbers on the plans published with the paper, and also from localities on the Quarter Sheets. They suggest a revised serial subdivision of the Upper Ordovician, viz., (1) the Gisbornian Series (the oldest), (2) the Eastonian Series, and (3) the Bolindian Series. Lists of typical fossils from each of these series were supplied, together with a table of ranges of both Upper Ordovician and Silurian species. They compared the Victorian species with the British and showed their points of agreement as well as their differences.

They discussed the Ordovician-Silurian boundary west of Melbourne and in other parts of Victoria, particularly in regard to the anomalies that have arisen in previous work. The stratigraphy of the Silurian in and near Melbourne as hitherto worked out is discussed at length. The basis of palaeontological subdivision, particularly that of J. W. Gregory when he divided the Silurian into two series, viz., the Melbournian (the lowest) and the Yeringian, is reviewed. They showed that the evidence conflicts with that of the palaeontology and stratigraphy of the Melbourne area—the type locality of the Melbournian, which is high in the Silurian and the equivalent of the British Ludlow, and the area to the west. They proposed a revised subdivision in which they erected a new series, viz., the Keilorian, and substituted the term Yarravian for Gregory's Melbournian. They considered the sequence to be—

3. Yarravian.
2. Yeringian.
1. Keilorian (oldest).

The name Yarravian is suggested in place of Melbournian owing to the confusion that must inevitably arise from the previous assumption that the Melbournian represents the lowest subdivision of the Silurian. The Yeringian is taken as the equivalent of the Wenlock on the authority of McCoy and Chapman. The Keilorian is characterized by the first appearance of the Monographtidae and comprises all those beds preceding the incoming of *M. riccartonensis*, which marks the beginning of the overlying series. On its characteristic graptolites the Yarravian (= Melbournian)
may be correlated with the Llandoverian (Valentian) of Britain.

The following species were recorded, many for the first time:

L., Lower Ordovician; G., Gisbornian; E., Eastonian; B., Bolindian; K., Keilorian; Yer., Yeringian; Y., Yarravian.

Didymograptus caduceus, L. G.
 var. ovatus, G.
Tetragraptus quadrirbrachiatus, L.
 tabidus, L. G.
 clarkfieldi, G.
Cryptograptus tricornis, L. G. E.
Glossograptus hinekii, L. G.
 acanthus, L. G.
 hermani, L. G.
 pilosus, L. G.
Lasiograptus sp., L. G.
Climacograptus riddellensis, L. G.
 antiquus, G.
 var. bursifer, G.
 lineatus, G.
 simulans, G.
 bicornis, G. E.
 var. peltifer, G.
 brevis, G.
 scalaris (? var.), B., K.
 var. miserabilis, B.
 normalis, B.
 minimus, E.
 cf. exigus, E.
 tubuliferus, E.
 putillus var. eximius, E.
 styloideus, B.
 supernus, B.
 missilis, E., B.
 uncinatus, B.
 caudatus, E. B.

Diplograptus (Orthograptus) cf. bellulus, E.
 calcacatus, E. B.
 var. acutus, E. B.
 basilicus, E. B.
 priscus, G. E. B.
 vulgatus, G. E.
 insectiformis var. vagus, B.
 cf. pageanus, E.
 quadrirnucronatus, E. B.
 var. spinigerus, B.
 truncatus, E. B.
 var. abbreviatus.
 intermedius, E. B.
 pauperatus, E.
 socialis, E. B. K.
 D. (Glyptograptus) sinuatus, B.
 tamariscus, B. K.
 teretiusculus, L. G.
 var. siccatus, G.
 euglyphus, L. G.
 D. (Mesograptus) foliaceus, G?
 magnus, K.
 modestus, K.
 multidens var. nov., G.
 ingens, G. E. B.
 D. (Amplexograptus) coelatus, L. G.
 perexcavatus, G. E. B.
Retiograptus pulcherrimus, B.
 speciosus, G.
 latus?, G.
 Dicranograptus zic-zac?, G. E.
 furcatus var. minimus, G. E. B.
 nicholsoni, G. E.
 ramosus, G. E.
 var. longicaulis, E. B.
 spinifer, G. E.
 brevicaulis, G.
 hians, E.
 var. apertus, E.
Dicellograptus sextans, G.
 caduceus, B.
 complanatus, B.
 var. ornatus, E. B.
 divaricatus, G. E.
 elegans, E. B.
 var. rigens, E. B.
 forchammeri, E. B.
 intortus, G.
 moffatensis, E.
 pumilus, B.
 gravis, E. B.
 affinis, B.
 didymus, B.
 latusculus, B.
Leptograptus flacidus, E. B.
 var. subjectus, E. B.
 eastonensis, E. B.
 capillaris, E. B.
Nemagraptus gracilis, G.
Pleurograptus linearis var. dispensa, B.
 Monograptus bohemicus, Y.
Numerous plans and sections are published with the paper.

W. J. Harris (127) erected the new family Isograptidae and subdivided it into the genera Isograptus (Moberg), Oncograptus (T. S. Hall), Cardiograptus (Harris & K.), Skiagraptus gen. nov., and Meandrogmptus (Moberg). He fixed as the genotype of Isograptus, *I. caduceus* (Salter), thus conceding priority to Salter’s specific name. He pointed out that *I. caduceus* and its allies are “the most easily followed of graptolite phylogenetic series and they are the most remniscent of the best-known palaeontological phylogenies.”

In the genus Isograptus he places *I. forcipiformis*, *I. hastatus* sp. nov., *I. manubriatus* (T. S. Hall partim), *I. dumosus* sp. nov., and *I. ovatus* (T. S. Hall). The genotype of Oncograptus is *O. upsilon*, and in this genus he placed *O. biangulatus*. The genotype of Cardiograptus is *C. morsus*, and in the genus he placed *C. crawfordi*. The genotype of Skiagraptus is *D. gnomonicus*. The genotype of Meandrogmptus is *M. schmalenseci* Moberg, and in this genus he placed the Victorian species *M. aggestus* and *M. tau* spp. nov. He stated “that unity is given to the whole by progressive development along several lines” which he specifies with examples, as follows:

1. The rhabdosome becomes increasingly scandent.
2. Progression and then regression in the form of the thecal aperture.
3. Concrescence, the more important.

He commented on the ancestry of *Isograptus caduceus*. He published a table showing the stages in the hypothetical development of that genotype and allied forms.

Stage 1 shows a progressive increase in the size of the rhabdosome, accompanied by more open spacing of the thecae, angle of divergence, downward direction of apertural
mucros, and the completeness of the thecal overlap. Stage 2
is characterized by deployment into allied genera. Oncograp-
tus upsilon and Cardiograptus morsus are the only forms
that do not seem distinctly paraconeic and even these are very
variable. The stage is marked by tendency towards reduc-
tion in size with closer thecae, still increasing angle of diver-
gence leading to biserial forms, variation in mucros, reduc-
tion of thecal overlap in manubriate forms, grouping of
thecal origins in secular region as distinct from concrescence,
but shown with concrescence in forms like Oncograptus and
Cardiograptus. Stage 3 is marked by extinction of the group
except for rare examples. The evidence is insufficient to
place Macandrograptus aggustus and M. tau. The catagene-
tic varieties of I. caduceus except I. caduceus var. diver-
gens are not shown in the table. They are commonest in Zones C1
and D5, and show great variability, making grouping diffi-
cult. Practically all agree in distally-narrowing stipes.

He then dealt with Isograptus caduceus and its varieties,
also with their stratigraphical horizons, with other varietal
forms, manubriate species, Isograptus forcipiformis and
Skiagraptus gnomonicus, Oncograptus and Cardiograptus
and their development, Macandrograptus spp. and other
species. He concluded with remarks on the correlation and
zonal range of the Isograptidae.

He defined the new family Isograptidae and gave an
amended diagnosis of the genus Isograptus. He described
and figured I. manubriatus, I. hastatus sp. nov., I. ovatus.
He commented on the genus Macandrograptus and described
and figured M. tau sp. nov. and M. aggustus sp. nov. He de-
scribed Skiagraptus gen. nov. and described and figured
S. gnomonicus. In conclusion he described and figured
Didymograptus eccaduceus sp. nov. and D. hemicyclus sp.
nov.

He supplied a page of text figures and a plate.

R. A. Keble (128) described the occurrence of graptolites
and vascular plants on a single slab of shale from the Yarra
Track, west of Matlock. He identified the graptolite as
Monograptus riceartocnensis (cf. 139) and the plant as belong-
ing to the genus Psilophyton. The occurrence of Monogr-
aptus with vascular plants definitely fixes their age as Silurian
and establishes them as the oldest vascular plants yet
recorded.

1934.—W. J. Harris and D. E. Thomas (129) contributed
a paper on the geological structure of the Lower Ordovician
rocks of (the County of) Eastern Talbot.
The distribution of the graptolite series and their relation to the axial lines were discussed. A section showing the graptolite zones was given. The relation of the auriferous zones to structure was considered and the authors came to the following conclusions regarding auriferous quartz reefs in the various zones:

1. The Darriwil beds have so far been uniformly barren.
2. The upper beds of the Castlemanian have contained productive fault reefs. Occasional saddle-reefs are known, but productive spurry reefs are more characteristic.
3. The Bendigo horizon contains numerous productive saddle reefs in addition to productive spurry reefs.
4. Auriferous saddle reefs occur in beds of the Lancefield horizon, but "indicator" gold is more characteristic.

The principal graptolite localities were listed. W. J. Harris (130) stated that to the east of the central or gold-fields area of Bendigo Ordovician strata higher in the series than those of the central area have long been known. He discussed a number of traverses across the boundary between these higher and lower beds and shows that if the localities are plotted "it is seen that the dividing line between the high Darriwilian beds to the east and the Lancefieldian beds to the west (probably Bendigonian in the southwest) is an almost straight line bearing about N. 15° W. and traceable about 14 miles or more. . . . The only practicable explanation of this seems to be faulting" for which he suggests the name Whitelaw Fault. He estimated that "the thickness of missing beds would be about 12,000 feet measured vertically or perhaps 5,000 feet measured at right angles to the dip."

R. A. Keble and W. J. Harris (131) figured and described Didymograptus acriculus sp. nov., D. mendicus sp. nov., Tetracystus chapmani sp. nov., T. decipiens var. bipatens nov., Pterograptus lyricus sp. nov., Climacograptus uncatus sp. nov., C. subminimus sp. nov., Diplograptus (Glyptograptus) euglyphus Lapw., D. (G.) euglyphus var. sepositus nov., D. (Amplexograpthus) perexcavatus Lapw., Trigonograptus sp., Glossograptus pilosus sp. nov., Cryptograptus circinus sp. nov., Retiograptus pulcherrimus sp. nov., Monograptus aplini T. S. Hall emend. Keble & H., M. spiralis (Geinitz) var. permensis nov., M. cf. scanius Tullb., M. pandus, and Stomatograptus australis (McCoy).

K. Sherrard (132) exhibited at the Royal Society, Sydney, New South Wales, Monograptus colonus var. compactus and
M. cf. nilssoni from the Parish of Derrengullen, Yass District, New South Wales.

R. Ruedemann (133) stated that Australia, New Zealand and China have furnished graptolite faunas that are closely related to those of North America. In dealing with Palaeozoic seas and palaeo-geographic problems, he stated that "conclusions, at present only preliminary and based upon uncompleted survey of the graptolite faunas of North America, confirm the presence of a Pacific Ocean as an independent centre of evolution. This is evidenced by the presence of such genera as Cardiograptus and Oncograptus and various species that occur in the Pacific (Australia, British Columbia, Idaho and Texas) but not in the Atlantic province. The presence of these genera and species in the Cordilleran geosyncline leaves no doubt of its connection with the Pacific Ocean, at least periodically."

1935.—W. J. Harris and D. E. Thomas (134) described and figured a number of species, viz., Pterograptus incertus sp. nov., Trichograptus immotus sp. nov., Tetrograptus defensus sp. nov., Didymograptus cognatus sp. nov., D. distinctus sp. nov., D. cuspidatus, D. compressus sp. nov., D. dubitatus sp. nov., D. nodosus, Diplograptus (Glyptograptus) austrodentatus, D. (G.) intersitus sp. nov., D. (G.) cf. euglyptus, (?), Mesograptus decoratus sp. nov., Amplexograptus modicellus sp. nov., A. confertus, A. differtus sp. nov., Glossograptus acanthus, (?) G. crudus sp. nov., (?) G. crudus var. gisbornensis nov., Cryptograptus schaferi, Lasiograptus (Hallograptus) proteus sp. nov., Lasiograptus (Thysanograptus) etheridgei, Cardiograptus crawfordi.

D. E. Thomas (135) stated that the lithology of the Victorian Ordovician is consistent throughout, sandstones, shales, grits and mudstones alternating.

He gave a table showing the graptolite subdivisions of the Ordovician System of Victoria suggested by Harris and Keble and by Thomas and Keble, and supplemented it with a more detailed account of each zone and its graptolite assemblages. He gave the distribution and structure of the Lower and Upper Ordovician rocks and referred to the period of faulting and folding.

F. Chapman and D. E. Thomas (136) dealt with the distribution of the Silurian system, its lithographical types, relation to older and younger rocks, sequence, occurrence in the Wallalla, Heathcote, and Melbourne districts and its contained fossils both graptolites and others. They retained the name Melbournian on account of its priority over Yarra-
vian and considered the sequence to be Keilorian, Melbournian, and Yeringian, the Keilorian being the oldest. They correlated the Keilorian with the Lower Silurian or Llandovery Series of Britain; over these beds, at Keilor, come beds with Monograptus riccartonensis, indicating Middle Silurian or Wenlock age. They correlated the Melbournian with the Lower Ludlow Series of the Upper Silurian of Britain, and the Yeringian with the Upper Ludlow.

They discussed the lithological characters and fossil contents of the Keilorian, Melbournian and Yeringian in the Melbourne-Lilydale-Upper Yarra district as well as in other parts of Victoria.

W. J. Harris (138) in an important contribution discussed an area including the Parishes of Wellsford, Strathfieldsaye and Sedgwick with adjacent portions of other parishes, particularly in regard to the Darriwilian. He gave the general distribution of the graptolite series and an outline of the zoning of the Darriwilian as high as the D2 Zone. He contended that the incoming of the Diplograptidae in force in the D2 Zone marks a very important stage in the graptolite succession and discussed the relationship of the D2 beds to the lower zones. He described five sections from east to west across the area, and showed that there is a normally descending series of beds to the Whitclaw Fault, and that above the D2 horizon two zones may be distinguished with possible passage beds, (a) a zone characterized by Diplograptus (Glyptograptus) intersitus and Didymograptus compressus, and (b) a higher zone characterized by Diplograptus (Mesograptus) decoratus and Didymograptus nodosus. These zones may be recognized throughout the area. He maintained that field and biological evidence fixes the position of the zones already mentioned and that elsewhere in Victoria a higher zone in the Lower Ordovician can be recognized, while the basal graptolite bed of the Upper Ordovician (as at Ba 67 Quarter Sheet 6 SE.) should also be included in a Diplograptus series. In regard to the zoning of the Darriwilian and Castlemanian in Victoria, he stated that the grouping of zones from D2 to basal Upper Ordovician inclusive, as a Diplograptus series, leads to an attempt to treat lower beds in the same way. He states that the breaks between the typical series are largely artificial and suggests that the zones below the Diplograptus series, i.e., from D3 downwards to C4 (inclusive) may be regarded as an Isograptus series. Immediately below this series are passage beds characterized by Didymograptus protobifidus Elles, while
below these again the Bendigo Zones form a *Tetragraptus fruticosus* series.

DIPLOGRAPTUS SERIES

(In the following table, c = common, r = rare, v = very)

Zone of *Diplograptus (Glyptograptus) teretiusculus* (highest).
Typical locality: Ba 67 at junction of Riddell’s and Jackson’s Creeks (Q.S. 6 SE.).

Characteristic assemblage:
- Diplograptus teretiusculus His. (v.c.).
- Diplograptus euglyphus Lapw. (c.).
- Climacograptus riddellensis Harris (c.).
- Cryptograptus tricornis Carr. (c.).
- Glossograptus hincksi Hopk. (c.).
- Retiograptus speciosus Harris (c.).
- Isograptus caduceus var. tenuis Harris var. (v.r.).
- Didymograptus (horizontal spp.) (c.).
- Pterograptus lyricus Keble & H.

Zone of *Diplograptus (Glyptograptus) euglyphus*.

Typical localities: Turner’s Quarry; Eight-Mile, Howqua River.

As above, except that *Diplograptus teretiusculus* has not been recognized with certainty, *Tetragraptus* is more common, and *Retiograptus speciosus* not yet recorded. *Isograptus ovatus* occurs at both typical localities, though elsewhere it seems to be an Upper Ordovician form.

Zone of *Diplograptus (?Mesograptus) decoratus* (D. aff. coelatus).

Typical localities: Loc. 164 Strathfieldsaye; loc. 300, Sedgwick; Allot. 8, Sec. XXIX Huntly.

- Diplograptus (?)Mesograptus) decoratus Harris & T. (v.c.).
- Diplograptus (Amplexograptus) confertus Lapw. (c.).
- Diplograptus differtus Harris & T. (c.).
- Diplograptus modicellus Harris & T. (c. locally).

Cryptograptus schaeferi Lapw.
- Lasiograptus proteus Harris & T.
- Isograptus forcipiformis (Rued.).
- Cardiograptus crawfordi Harris.
- Brachiograptus etaformis Harris & K.
- Trigonograptus ensiformis J. Hall.
- Didymograptus nodosus Harris (v.c.).
- Didymograptus acriculus Keble & H.

In what are probably the lower beds of this zone, *D. decoratus, D. nodosus* and *Lasiograptus etheridgei* are the commonest species as, e.g., at loc. 176 and north-west of Turner’s Quarry. A similar assemblage, with *Didymograptus nodosus*, very rare, is found at Woodend (Allot. 95, 99) and at Newham (Sec. 20).
Zone of Diplograptus (Glyptograptus) intersitus.
Typical localities: Loc. 196, 210 Strathfieldsaye; 298 Sedgwick.
Diplograptus (Glyptograptus) intersitus Harris & T. (v.c.).
Lasiograptus etheridgei Harris (v.c.).
Isograptus forcipiformis (Rued.).
caduceus var.
Cardiograptus crawfordi Harris (c.).
Cryptograptus schaferi Lapw.
Glossograptus acanthus Elles & W.
Trigonograptus ensiformis J. Hall.
Didymograptus compressus Harris & T. (c.).

spp.
Tetragraptus spp.
Pterograptus incertus Harris & T. (c.).
Phyllograptus sp.
Loganograptus cf. logani J. Hall (v.r.).

Zone of Diplograptus australis (D2).
Typical localities: Loc. 310 Sedgwick; Guildford-Strangways Road;
Brisbane Ranges.
Characteristic assemblage.

ISOGRAPTUS SERIES
Zone of Cardiograptus morsus (D3).
,,,, Cardiograptus and Oncograptus (D4).
,,,, Oncograptus (D5).
,,,, Isograptus caduceus var. maxima et var. maximo-divergens (C1).
,,,, I. caduceus var. victoriae (C2).
,,,, var. lunata (C3, C4).

DIDYMOMGRAPTUS PROTOBIFIDUS PASSAGE BEDS
Zone of Didymograptus protobifidus and Isograptus caduceus var. primula
et lunata (C5).
,,,, Didymograptus protobifidus and Tetragraptus fruticosus (B1).

TETRAGRAPTUS FRUTICOSUS SERIES
(Bendigonian Zones)

He correlated the Diplograptus series with the Llanvirnian
of Britain and suggested that the correlation of beds imme-
diately below these will probably be facilitated by a study of
the Victorian extensiform Didymograpti.

He published a map with notes, a section, an index to
graptolite localities and a list of references.

W. H. Lang and I. C. Cookson (139) contributed a paper
on the flora, including vascular land-plants, associated with
Monograptus, in rocks of Silurian age. They submitted the
associated graptolites to G. L. Elles, who identified M. unci-
natus var. orbatus from the Yarra Track beds and M.
chimaera, M. uncinatus var. orbatus et var. micropoma from
the Alexandra beds; she regarded the assemblage typical of
a Lower Ludlow horizon (110 and 128).
G. F. K. Naylor (141) indicated on a map of the Goulburn District, New South Wales, Upper Ordovician localities yielding Climacograptus, Diplograptus, Dicranograptus and Dicellograptus. From a locality on the Bungonia-Goulburn Road, about three miles west of Bungonia, he recorded Lower Silurian forms comparable with Monograptus barrandei and M. exigus. He also recorded from a locality on the main Sydney Road near the Towrang turn-off Monograptus of an Upper Silurian type. D. E. Thomas (ibid. p. 80) suggested that it was \textit{M. bohemicus} and probably contemporaneous with the zone of \textit{M. nilssoni}. Naylor himself tentatively determined another form as \textit{M. nilssoni}.

W. N. Benson and R. A. Keble (142) wrote on the geology of the regions adjacent to Preservation and Chalky Inlets, Fiordland, New Zealand, and correlated the New Zealand assemblages with those of Victoria. They described and figured a number of species, some of which were new and should occur in Victoria. In particular, they referred \textit{Leptograptus antiquus} T. S. Hall to the genus \textit{Bryograptus}.

1936.—G. F. K. Naylor (143) recorded from a locality between the third and fourth mile-posts on the Bungonia-Goulburn Road (presumably the locality mentioned in 141) \textit{Monograptus exigus} and \textit{M. barrandei} and in addition \textit{M. undulatus}, \textit{M. cf. decipiens}, \textit{M. cf. tortilis}. He recorded from the Upper Ordovician \textit{Diplograptus quadrimucronatus} and \textit{D. calcaratus} var. \textit{tenuicornis}.

He described and figured from more or less specified localities \textit{Monograptus bohemicus}, \textit{M. exigus}, \textit{M. cf. decipiens}, \textit{M. undulatus}, \textit{M. cf. tortilis}, \textit{Diplograptus (Orthograptus) quadrimucronatus} and \textit{D. (O.) calcaratus} var. \textit{tenuicornis}. He described \textit{M. barrandei}.

R. A. Keble (144) recorded and figured from the Bendigo Series a form in which the flat spiral polypary and thecae growing upwards in a single linear series seemed to him to leave no other alternative than to place it among the Monograptidae.

O. M. B. Bulman (145) made serial sections and dissections of the graptolites of the Holm Collection from which he made wax models and traced their history and evolution by a close study of the initial part of the rhabdosome. This important work threw considerable light on such peculiarly Australian genera as \textit{Brachiograptus} Harris & K., \textit{Cardiograptus} Harris & K., \textit{Goniograptus} McCoy, \textit{Oncograptus} T. S. Hall and many cosmopolitan genera.

He also investigated (146) by serial sectioning and grind-
ing two specimens of *Oncograptus* from the El Paso Limestone (Canadian) of Marathon, Texas, United States, preserved in semi-relief in impure limestone. He showed "that *Oncograptus* can have no close relation to *Isograptus* but is derived from a Tetraraptid in which the mode of development had not progressed to the minutus stage of the Dichograptid type, where th.2³ is produced from th.1¹, opposite and approximately at the same level as th.1². It hardly seems probable that a proximal end with the structure of *Oncograptus* could progress further towards the Diplograptid type of development and hence that *Cardiograptus* (assuming this to be its completely biserial descendant) could be an ancestor of any "normal" Diplograptids."

F. Chapman and D. E. Thomas (147) recorded Cambrian Hydroida from Heathcote and Monegeeta Districts. New genera, species and varieties described and figured are *Archaeocryptolaria recta* Chapm. var. *flexilis* nov., *Archaeocryptolana serialis* sp. nov., *A. fruticosa* sp. nov., *Protohaleecium* gen. nov., *P. hallianum* sp. nov., *Sphenecium* gen. nov., *S. discoidalis* sp. nov., *Cactograptus flexispinosus* sp. nov., *C. plumigerus* sp. nov., *Acanthograptus candelabrum* sp. nov.

1937.—P. Ekström (148) described and figured *Phyllograptus nobilis* Harris & K. and used it as a subzonal fossil in Norway.

A. Monsen (149) described and figured many Australian forms that had been found in the Norwegian graptolite shales such as *Dictyonema macgillivrayi*, *Didymograptus* cf. *aureus*, *D. cf. perditus*, *Tetragraptus* cf. *harti*, *T. decipiens* and *Goniograptus* aff. *palmatus*. Monsen compares the Australian succession as given by Harris and Keble (121) with the Norwegian succession and adds a synoptic table correlating the Norwegian with the Swedish, English, North American, Australian and Bohemian zones.

K. Sherrard and R. A. Keble (150) recorded graptolites from specified Upper Ordovician localities in the Parishes of Morumbateman, Mundoonen and Manton, near Yass, New South Wales. They gave a correlation table of the Yass occurrences with other places in New South Wales. From the Silurian beds near Yass, they recorded *Monograptus flemingi*, *M. cf. tumescens*, *M. cf. nilssoni*, *M. cf. vomerinus* and *Dictyonema* sp. They stated that "the graptolite bed overlies the Limestone Creek beds and incidentally the Barrandella shales ... the succession seems to be quite conformable and undisturbed ... Hence the age of the Limestone Creek beds and the Barrandella shales, if Shearsby
and Sherrard are right in stating that they are the same bed, may be fixed by the graptolite bed, that is, they are Silurian, probably high Wenlockian." Descriptions and figures were given of both Upper Ordovician and Silurian forms, including *Retiograptus yassensis*, a new species.

E. A. Ripper (151) published a paper on *Didymograptus protobifidus*. After reviewing the Victorian pendent *Didymograptus*, she gave a description of *D. protobifidus* Elles. She stated that T. S. Hall "referred under the name of *D. bifidus* (J. Hall) to some forms which undoubtedly belong to this more primitive species." Transients are to be found in the Upper Bendigonian and Lower Castlemanian assemblages and a number of localities where they occur are specified.

She gave a comparative table of the specific characters and details of the evolutilional changes of *D. bifidus* and *D. protobifidus*, also remarks on assemblages and correlations.

"After a careful comparison of Victorian and British specimens," she concluded, "the tuning-fork graptolite occurring most abundantly in the uppermost Bendigonian and Lower Castlemanian (B1 and C5) zones in Victoria is identified with *Didymograptus protobifidus* Elles."

She supplied a table showing the proposed correlation of the Victorian and British Lower Ordovician graptolite succession.

G. F. K. Naylor (152) in a preliminary note on the occurrence of Palaeozoic strata near Taralga, New South Wales, gave a map and sections of the district. In the basal sediments he found "generically recognizable specimens of *Diplograptus, Climacograptus, Dicellograptus* and *Dicrano- graptus* pointing unquestionably to the Upper Ordovician age of the beds."

Silurian beds occur in rather restricted lenticular bands folded in among the Ordovician strata. The two most prominent forms of graptolites occurring in them are *Monograptus bohemicus* and *M. chimaera*.

D. E. Thomas (153) published notes on the Silurian rocks of the Heathcote area. He gave a classification to which he attached local names. In his Dargile Beds the lower beds are unfossiliferous and are separated by some sandstone from the Graptolite Beds which also contain numerous shelly fossils. He divided the Graptolite Beds into:

(a) The lowest beds with *Monograptus uncinatus*, var., *M. colonus* var. *compactus* and fossils other than graptolites.
(b) These are succeeded by sandstones and mudstones and the former have
yielded corals and a starfish bed. With this a graptolite cf. *M. nilssonii* was found.

(c) The upper beds yielded abundant graptolites, *M. colonus* var. *compactus*, *M. uncinatus* var., *M. bohemicus* and *M. varians* and fossils other than graptolites.

W. J. Harris and D. E. Thomas (154) published descriptions and figures of the following species:

(a) From the Heathcote district—
Monograptus bohemicus, *M. colonus* var. *compactus*, *M. varians*, *M. uncinatus* var. *orbatus*, *M. uncinatus* var. *micropoma*, *M. sp. aff. nilssonii* and *M. cf. comis*.

(b) From the Kilmore district—
Diapograptus sinuatus, *Climacograptus hughesi*, *Monograptus runcinatus*, *M. (?) nudus*, *M. priodon*, *M. exigus* (syn. *M. aplini T. S. Hall*), *M. spiralis* var. *permensis*, *M. dubius*.

(c) From the Yarra Track—
M. uncinatus var. *orbatus*, *M. uncinatus* var. *micropoma*, *M. vomerinus* and *M. vomerinus* var. *crenulatus*.

(d) From the Melbourne district—
M. crinitus, *M. dubius*.

1938.—W. J. Harris and D. E. Thomas (155) dealt with the basal Bendigo (B5) assemblage from Allot. 16A, Parish of Campbelltown. They stress some of the features shown by the assemblage:

“(i) Instability of branching, so that Dichograptid or Loganograptid forms with from six to sixteen branches occur, together with five or six branched forms otherwise indistinguishable from *Tetragraptus fruticosus* (vide *Bryograptus crassus* infrA). Three branched forms which are apparently three-branched representatives of horizontal *Tetragrapti* are also found.”

“(ii) A great variety of extensiform *Didymograpti* including a series with ‘closed’ apertural regions (*D. hirundo* type) without any evidence of ancestral history as they are quite distinct from the rare *Didymograpti* recorded from the next lower zone (L1).

“(iii) Abnormal *Clonograpti* of great size with distinctive thecae of the *Tetragraptus chapmani* type.”

“The higher beds (B4) are also extremely interesting as from them we are able to record for the first time from Australia the genera *Trochograptus* and *Schizograptus*, both with abnormal features, while the three-branched forms referred to above are not uncommon. This list by no means
exhausts the interesting features presented by the present collections."

"Apart from the forms which may be called abnormal the most interesting feature of the B5 assemblage from Allot. 16A is the notable 'burst' of extensiform Didymograpti and, contrary to the conclusions drawn by Elles from English collections, the commonest forms on this, the lowest Victorian horizon on which Didymograpti are common, are those with 'closed' proximal regions. In Victoria the only Didymograpti of the Upper Lancefieldian are the distinctive D. taylori and D. pritchardi. The horizontal forms which come in so suddenly in B5 persist to higher horizons, but the D. hirundo type does not range above B4 where it reaches its climax in D. latus var. acqualis nov."

"The B5 horizon corresponds with that of the reclined Tetragrapti of the zone of D. extensus as defined by Elles and this agrees with her earlier correlation. The same horizon has been noted in New Zealand but there, as at most localities in Victoria, the number of species seems limited and there is no indication of the 'burst' of horizontal Didymograpti. The lower Bendigonian 'burst' of new forms is preceded by the 'burst' of Bryograpti and Clonograpti in the Middle Lancefieldian (L3) described by T. S. Hall. In the L1 beds the incoming of the horizontal Tetragrapti such as Tetragraptus approximatus and T. acclinans does not alter the general aspect of the assemblage, but the entry of the dependent Tetragrapti such as T. fruticosus and the extensiform Didymograpti in B5 introduces important new elements. A comparison of the Lower Bendigonian with those assemblages from other countries which may be correlated best with that stage shows that local differences are probably more important than some European graptolithologists have been prepared to admit, and that schemes of development based on the appearances of forms in any one region may not stand the test of observation when applied to more distant fields."

Commenting on branching as a generic character of the Dichograptids, they stated that "the presence of so many Dichograptid forms with apparently transitional numbers of branches brings forcibly to notice the artificial distinctions such as divide Loganograptus and Dichograptus, Trocho-graptus and Schizograptus and even Tetragraptus (where three-branched forms have been included in a genus which by its name was meant for four-branched forms)... The

problem of the development of branching forms such as Loganograptus and Dichograptus is complicated in Victoria by the simultaneous appearance of so many variants in the one bed without any indication of them in lower zones. It is therefore impracticable as far as Victorian graptolites are concerned to account for the production of Dichograptus by the reduction of stipes of Loganograptus unless it is presumed that reduction commenced as soon as Loganograptus appeared. The two forms appear together in B5, Dichograptus then persists, though not as a common form, as high as the Middle Darriwil, while Loganograptus is hardly known to occur again (one or two specimens have been recorded) until the Upper Castlemaine zones are reached, in spite of the large collections that have been made from intervening horizons. We have already referred to five- and six-branched dependent forms, which in number of branches, resemble Tetragraptus fruticosus, the normal four-branched form of which also occur in the same bed. These forms, abnormal in nothing except in number of branches, we must by current usage separate as Bryograpti (vide B. crassus infra).

Another example of reduced branching is shown by forms from the B5 and B4 horizons which have only three branches and have therefore a superficial resemblance to Triograptus Monsen. It seems clear, however, that the three-branched habit is not due to the typical Triograptus form of development but rather to the failure of a fourth branch to arise in a horizontal Tetragraptus such as T. harti; that is these forms represent the three-branched phase of a horizontal Tetragraptus in the same way as the three-branched T. fruticosus does of a dependent Tetragraptus. An alternative would be to derive them from Trichograptus by suppression of branches but the Tetragraptus explanation seems simpler.” Specimens were figured in the present paper but the authors postponed fuller discussion.

The forms figured and described are: Trochograptus australis, sp. nov., T. indignus sp. nov., T. cf. diffusus, Schizograptus incompositus sp. nov., S. spectabilis sp. nov., Sigma-graptus yandoitensis sp. nov., Trichograptus fergusoni, Bryograptus crassus sp. nov., Clonograptus rarus sp. nov., C. smithi sp. nov., C. ramulosus sp. nov., C. tenellus var. problematica nov., Dichograptus sedecimus sp. nov., Tetragraptus pendens, T. harti, T. triograptoides sp. nov., T. volitans sp. nov., T. approximatus, Didymograptus latus, D. latus var. aequalis nov., D. abnormis, D. hemicyclyus, D. similis, D. cf. suecicus, D. vicinus sp. nov. and D. aspersus sp. nov.
The same authors contributed (156) some notes on the geology of the Howqua valley. They published a map and a section from west to east. They identify specimens in collections made at certain specified Upper Ordovician (Gisbornian) and Lower Ordovician (Darriwilian, Bendigonian and Lancefieldian) localities. They discuss T. S. Hall's identification of *Monograptus*.

W. J. Harris and D. E. Thomas (157) summarize critically the older classifications, and propose a modification of that latest in use, in which more time-significance is attached to the entry in abundance or "bursts" of new groups of forms into the faunal sequence, and the enumeration of successive zones in the reverse order of their deposition, which crept into the older scheme, is avoided. Certain of the major series are redefined, new serial names are introduced, and a Middle Ordovician division is for the first time brought definitely into the classification. The following is a brief statement of the scheme, and the correlation of the new zones with the older, the zone numbers for which are given in inverted commas.

Lower Ordovician

(As now restricted)

Lancefield Series or Lancefieldian

- **La1** Zone of *Staurograptus* and *Dictyonema*. ("L4").
- **La2** Zone of *Bryograptus*.
 - **La2a**: Burst of *Bryograptus*, *Tetragraptus*, primitive *Didymograpti*, and large *Dictyonemas*. ("L3").
 - **La2b**: No large *Dictyonemas* ("L2").
- **La3** Zone of *Tetragraptus approximatus* ("L1").

Bendigo Series or Bendigonian (as now restricted)

- **Be1** Zone of *Tetragraptus fruticosus*, four-branched. Entry of the zone fossil; survival of *T. approximatus* ("B5"). This is one of the most important bursts of Victorian graptolites.
- **Be2** Zone of *T. fruticosus*, four-branched. Absence of *T. approximatus* ("B4").
- **Be3** Zone of *T. fruticosus*, three-branched. Entry of *T. fruticosus*, three-branched, in force; survival of *T. fruticosus*, four-branched ("B3").
- **Be4** Zone of *T. fruticosus*, three-branched. Absence of *T. fruticosus*, four-branched ("B2").

Chewton Series or Chewtonian (a Series newly instituted)

- **Ch1** Zone of *Didymograptus protobifidus*. Entry of *D. protobifidus*. Survival of *T. fruticosus*, three-branched ("B1").
- **Ch2** Zone of *D. protobifidus*. Absence of *T. fruticosus*. ("C5").
- **Ch3** Zone of *Didymograptus balticus*. At present imperfectly known. Characterized by *Didymograpti* and *Phyllograpti*, and containing small forms of *I. caduceus* var. *lunata*. ("C4").
Castlemaine Series or Castlemanian (as now restricted)

Ca1 Zone of *Isograptus caduceus* var. *lunata*. Entry of *I. caduceus* var. *lunata* in force. ("C3").

Ca3 Zone of *Isograptus caduceus* var. *victoriae*. ("C2").

Ca3 Zone of *Isograptus caduceus* var. *maximus* and var. *maximo-divergens*. ("C1").

Yapeen Series or Yapeenian

(Formal acceptance of name previously suggested to include the lower portion of the Darriwilian)

Ya1 Zone of *Oncograptus*. ("D5").

Ya2 Zone of *Cardiograptus*. ("D4 and D3").

Middle Ordovician

(Term established, with usage rather different from that in Great Britain, to include the upper portion of the Darriwilian and one higher zone)

M.O.1 Zone of *Diplograptus* (*Glyptograptus*) *austrodonatus*. Entry of the *Diplograpti* in force. ("D2").

M.O.2 Zone of *D. (G.) intersitus* ("D1a").

M.O.3 Zone of *D. (G.) decoratus*. ("D1b").

M.O.4 Zone of *D. (G.) teretiusculus* (formerly considered basal Gisbornian). *Glossograptus hincksii* abundant, entry of *Climacograpti*.

Upper Ordovician

Regarding the Upper Ordovician, Harris and Thomas, commenting on the divisions of Thomas and Keble (126) into

2. Eastonian.
1. Gisbornian.

state that:

1. Apart from the zone of *Glyptograptus teretiusculus*, which has been included in the Middle Ordovician, the zone of *Nemagraptus* and zone of *Climacograptus pelifer* represent the Gisbornian.

2. The lowest beds of the Eastonian were not ascribed to any definite zone, but the upper part was correlated with the zone of *Dicranograptus clingani*.

3. The Bolindian was stated to contain three characteristic assemblages—

 (a) At the base *Diplograptus quadrimucronatus*, *Dicellograptus elegans*, and *Climacograptus tubuliferus*.

 (b) *Pleurograptus* sp. characterizes the middle portion.

 (c) Still higher assemblages are characterized by *Retiograptus pulcherrimus*, while *Diplograptus sinuatus* and *D. tamariscus* are also present.

As a result of work in the Romsey and Emu Creek areas, Thomas subdivided the Upper Ordovician as follows:

Zone of *Dicellograptus cf. complanatus*
Zone of *Pleurograptus*
\[\text{Bolindian} \]
Zone of *Dicranograptus hians*
Zone of *Climacograptus wilsoni* (according to Elles (119), 1932, this is *C. baragwanathi*, T. S. Hall)

Zone of *Climacograptus pelifer*
Zone of *Nemagraptus gracilis*

Eastonian.

Work by D. E. Thomas in the Romsey area on the zoning of the Upper Ordovician corroborates this classification to a certain extent; but faulting in the sections, their limited extent, the absence of certain zones, and the difficulty of obtaining well preserved specimens make a comprehensive account of the zones rather difficult. The remarkable similarity of the zones in the Upper Ordovician of Australia to those of Great Britain is striking, and with further work it may even be possible to adopt the English classification. The zone of *Diellograptus cf. companatus* appears to include the fauna of the zone of *Dicellograptus anceps* of the European classification. Elles\(^1\) points out that the "zone of *Diellograptus companatus* is conditional," and that "in Scandinavia a small form of *D. anceps* occurs with this fauna; so that in all probability it lies below the zone of *D. anceps.*" Harris and Thomas consider that until further detailed work is done, Thomas's subdivision of 1935 (135) should be adopted.

The characteristic assemblages are as follows:

Gisbornian.

The zone of *Nemagraptus* is easily identified by the incoming of *Nemagraptus*, *Diellograptus sextans*, *D. divaricatus*, *Dicranograptus nicholsoni*, *D. zie-zac*, *Climacograptus bicornis*, *Hallograptus mucronatus*, and the various *Leptograpti*. The association is very similar in the next zone, but in it *Climacograptus pelifer* and *Mesograptus multidens* are very characteristic.

Eastonian.

The base of the Eastonian is characterized by abundant *Orthograpti*. In the zone of *Dicranograptus hians*, the zone fossil is abundant and *Climacograptus tubuliferus* is characteristic. *Dieranograptus clingani* occurs, but not in abundance. According to Elles, *Climacograptus baragwanathi* is synonymous with *C. wilsoni*.

Bolindian.

Pleurograptus is a rare form. *Orthograptus quadrimucronatus*, however, is very characteristic. The beds containing

this form are now included by Harris and Thomas in the Bolindian. Thomas and Keble (126) stated that this form occurred at the top of the Eastonian as well as at the base of the Bolindian. Harris and Thomas consider that the association of forms allies these beds more to the Eastonian than to the upper part of the Bolindian. Lithological changes appear in the Bolindian, so that in all probability it may be necessary to transfer this zone to the Eastonian, thus increasing the similarity with the British succession.

The higher beds of the Bolindian are included in the zone of _Dicellograptus_ cf. _complanatus_. Three assemblages deserve mention in this zone:

(a) beds with the form identified as _D._ cf. _complanatus_;
(b) beds with _Reticograptus pulcherrimus, Leptograptus eastonensis_ and _Climaeograptus uncinatus_;
(c) beds with _Glyptograptus tamariscus_.

The exact relationship is imperfectly known, but no _Dieranograptus_ has yet been found in these beds.

Harris and Thomas add a correlation of Victorian Ordovician zones with those of Great Britain, North America, Sweden, Norway, Bohemia, China and South America. They also include three plates of line drawings of the more important graptolites.

O. M. B. Bulman (158) comments on several graptolite genera that are found in Australia. _Goniograptus_ with its four main zig-zag stipes (second order of dichotomy) from the angles of which undivided lateral branches are given off alternatively on both sides (the lateral branching being very regular both as regards interval and angle) might equally be considered as resulting from a regularly alternating dichotomous type of division. _Brachiograptus_ has four main stipes, which form with the “funicle” the letter H, from the outer sides of which undivided lateral branches are produced. He comments on _Atopograptus_ under the heading of _Didymograptus_. _Oneograptus_ he considers is apparently derived from _Tetragraptus_ by stipe reduction, but retains the two branches incorporated in the proximal end. _Cardiograptus_, in which the distal stipes have failed to develop, resembles _Oneograptus_.

He doubts the occurrence of _Diplograptus (sensu stricto, i.e., Mesograptus)_ and _Amplexograptus_ in Australia. He queries _Trigonograptus_ as a member of the Diplograptidae. _Skiagraptus_ is also queried as a member of the Diplograptidae, and he briefly defines it as having “biserial proximal
thecae pendent in position, later thecae becoming more horizontal." He relegates *Thysanograptus* to the synonymy of *Lasiograptus* (*sensu stricto*).

Triacenograptus he places under ? Graptoloidea incertae sedis describing it as having a "rhabdosome circular with radiating branches, from which paired lateral branches are repeatedly produced forming trident-like structures, adjacent lateral branches may unite to a single branch, from which paired laterals may again later be developed."

In regard to hydroids he includes under the Order Dendroidea, Family Dendrograptidae, Family Callograptidae, Family Acanthograptidae fam. nov. for the genera *Acanthograptus* and *Thallograptus*, and the Family Ptilograptidae of which the only genus is *Ptilograptus*. As a separate grouping he gives genera of uncertain systematic relationships, described as primitive graptoloids or dendroids, but having probably hydroid affinities; such are *Mastiograptus* and *Chaunograptus*. A genus which has been referred to the Dendroidea but with uncertain relationships is *Cactograptus*.

G. F. K. Naylor (159) has extended his study of graptolites in New South Wales by recording the presence of twenty-four Upper Ordovician species and varieties distributed through twenty-six localities and ten Silurian species and varieties in four other localities, the position of which are stated in terms of a grid-map covering 2,000 square miles of the Goulburn District, lying chiefly within the County of Argyle. He reaffirms his determinations of the occurrence of *Monograptus barrandei*, *M. cf. decipiens*, *M. cf. tortilis* and *M. undulatus*, on which some doubt had been expressed by Thomas (141). He also suggests that the locality Tallong named in the title of T. S. Hall's paper (63) was a misprint for Tolwong, the name appearing in the title of the second paper (86) on fossils from the same district.

Subdivisions Proposed by Various Authors.

Silurian.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeringian Melbournian</td>
<td>Tanjilian</td>
<td>Yeringian Melbournian Keilorian</td>
<td>Yarravian = Melbournian Yeringian Keilorian</td>
</tr>
</tbody>
</table>
Species and Synonyms of Graptolites

Abbreviations

aff. ... related to
auct. non. ... not author
Barr. ... Barrande
Brongn. ... Brongniart
Carr. ... Carruthers
cf. ... compare
Chapman & T. ... Chapman & Thomas
desc. ... description
Elles & W. ... Elles & Wood
emend. ... emendation
Eth. ... R. Etheridge Jun.
fig. ... figure
Harris & K. ... Harris & Keble
Harris & T. ... Harris & Thomas
His. ... Hisinger
Hopk. ... Hopkinson
Keble & B. ... Keble & Benson
Keble & H. ... Keble & Harris
Lapw. ... Lapworth
Linn. ... Linnarson
Murch. ... Murchison
Nich. ... Nicholson
nom. nud. ... nomen nudum
Rued. ... Ruedemann
syn. ... synonym
Thomas & K. ... Thomas & Keble
torn. ... Tornquist
Tull. ... Tullberg
var. ... variety
var. nov. ... new variety
vide ... see

Reference in Bibliography

- Atopograptus woodwardi Harris ... 105 (desc.), 112, 131, 134, 135, 138, 157, 158
- Brachiograptus etaformis Harris & K. 121 (desc.), 135, 138, 157
- clarki T. S. Hall 39 (desc.), 40, 87, 97, 134, 135, 157
- crassus Harris & T. 155 (desc.), 157
- hunnebergensis Moberg 157
- simplex Torn. 157
- victoriae T. S. Hall 39 (desc.), 40, 59, 69, 70, 87, 97, 120, 121, 134, 135, 156, 157
Species and Synonyms

Callograptus salteri J. Hall
Cardiograptus crawfordi Harris
morsus Harris & K.
Cladograptus furcatus J. Hall, syn. of Dicranograptus furcatus
ramosus J. Hall, syn. of Dicranograptus ramosus
Clathrograptus geinitzianus J. Hall, syn. of Retiograptus geinitzianus
Climacograptus affinis T. S. Hall
antiquus J. Hall
var. bursifer Elies & W.
var. lineatus Elies & W.
var. simulans Thomas & K. M.S.
baragwanathi T. S. Hall, syn. of C. wilsoni
bicornis J. Hall
var. longispina T. S. Hall
var. peltifer Lapw.
var. tridentatus, syn. of C. bicornis
brevis Elies & W.
caudatus Lapw.
var. wellingtonensis, syn. of C. candatus
coelatus Lapw., cf. Diplograptus coelatus
exiguus Keble & H.
hastata T. S. Hall
hughesi (Nich.)
immatatus Nich.
mensoris T. S. Hall
minimus Carr.
miserabilis, vide C. scalaris var. miserabilis
missilis Keble & H.
normalis Lapw.
putillus var. eximius Rued.
quadrangularis McCoy, syn. of C. riddellensis Harris
rectangularis McCoy, syn. of C. riddellensis
riddellensis Harris
scalaris His.
var. miserabilis Elies & W.
var. normalis Elies & W.

Reference in Bibliography

47 (cf.), 51 (cf.)
105 (desc.), 121, 127, 131, 134, 138, 157
81 (desc.), 90, 98, 105, 112, 119, 120, 121, 122, 127, 137, 138, 157
42 (desc.)
98, 126, 135, 157
126
126
53 (desc.), 119
6, 8, 14, 19, 22, 30, 37, 38, 40, 46, 52, 53, 57, 63, 69, 70, 75, 84, 90, 102, 116, 123, 126, 134, 135, 150, 156, 157
47 (desc.), 57, 84, 119
84, 90, 102, 123, 126, 134, 135, 157
126, 131
37, 69, 70, 84, 86, 123, 126, 134, 135, 157, 159
86
102 (desc.), 123, 126 (cf.)
47 (desc.), 51, 75, 84, 89
153
51 (cf.), 84 (cf.)
53 (desc.), 84, 102, 119
123, 126, 131
102 (desc.), 131
42
123, 126 (cf.)
14, 19, 30, 34, 37, 159
98 (desc.), 123, 126, 131, 138, 156, 159
126, 157, 159
126
126 (cf.)
<table>
<thead>
<tr>
<th>Species and Synonyms</th>
<th>Reference in Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>scharenbergi Lapw.</td>
<td>126 (cf.)</td>
</tr>
<tr>
<td>simulans vide C. antiquus, var.</td>
<td>126</td>
</tr>
<tr>
<td>simulans</td>
<td>126 (cf.)</td>
</tr>
<tr>
<td>styloideus Lapw.</td>
<td>131 (desc.)</td>
</tr>
<tr>
<td>subminimus Keble & H.</td>
<td>126, 159</td>
</tr>
<tr>
<td>supernus Elles & W.</td>
<td>46, 47, 51, 53, 84, 86 (cf.), 114, 126, 131, 134, 135, 157</td>
</tr>
<tr>
<td>tubuliferus Lapw.</td>
<td>126, 131 (desc.), 157</td>
</tr>
<tr>
<td>uncinatus Keble & H.</td>
<td>52 (desc.), 84, 102</td>
</tr>
<tr>
<td>wellingtonensis T. S. Hall</td>
<td>83, 84, 119, 134, 135, 157</td>
</tr>
<tr>
<td>Clonograptus abnormis J. Hall</td>
<td>23, 27, 61, 69, 70, 90, 120, 121</td>
</tr>
<tr>
<td>flexilis J. Hall</td>
<td>23, 27, 37, 39, 40, 43, 57 (?), 59, 61 (?), 69, 70, 87, 97, 121, 134, 135, 156, 157</td>
</tr>
<tr>
<td>gracilis J. Hall</td>
<td>59</td>
</tr>
<tr>
<td>magnificus Pritchard</td>
<td>23 (desc.), 27, 28, 37, 39, 40, 56, 57, 59, 69, 70, 87, 97, 120, 157</td>
</tr>
<tr>
<td>ramosus Harris & T.</td>
<td>155 (desc.)</td>
</tr>
<tr>
<td>rarus Harris & T.</td>
<td>155 (desc.)</td>
</tr>
<tr>
<td>rigidus J. Hall</td>
<td>23, 39, 40, 43, 57, 59, 69, 70, 78, 80, 87, 97, 131, 134, 135, 156, 157</td>
</tr>
<tr>
<td>var. tenellus, vide C. tenellus</td>
<td>67, 68</td>
</tr>
<tr>
<td>var. typicus (? nom. nud.)</td>
<td>155 (desc.)</td>
</tr>
<tr>
<td>smithi Harris & T.</td>
<td>39, 40, 43, 56, 57, 59, 69, 70, 87, 97, 120, 121, 127, 131, 134, 135, 145, 156, 157</td>
</tr>
<tr>
<td>tenellus Linn. cf. C. rigidus var. tenellus</td>
<td>155 (desc.)</td>
</tr>
<tr>
<td>var. problematica Harris & T.</td>
<td>6, 8, 11, 16</td>
</tr>
<tr>
<td>Coenograptus gracilis J. Hall, syn. of Nemagraptus gracilis (quod vide)</td>
<td>131 (desc.), 157</td>
</tr>
<tr>
<td>Cryptograptus circinus Keble & H.</td>
<td>157</td>
</tr>
<tr>
<td>sphaeri (Lapw.)</td>
<td>52, 53, 57, 63, 70, 84, 90, 98, 102, 105, 120, 121, 123, 126, 132, 138, 145, 150, 156, 157, 159</td>
</tr>
<tr>
<td>tricornis Carr.</td>
<td>123</td>
</tr>
<tr>
<td>tricornis, var. insectus Rued.</td>
<td>25, 37, 134</td>
</tr>
<tr>
<td>Dendrograptus divergens J. Hall</td>
<td>25 (cf.), 37</td>
</tr>
<tr>
<td>flexilis T. S. Hall non J. Hall, syn. of D. flexuosus J. Hall</td>
<td>46, 47 (desc.), 51, 53, 75, 84, 89 (cf.), 102, 126</td>
</tr>
<tr>
<td>Dicellograptus affinis T. S. Hall</td>
<td>30, 37, 40, 46 (cf.), 84, 86 (cf.), 157, 159</td>
</tr>
<tr>
<td>anceps Nich.</td>
<td>46 (cf.), 75, 86 (cf.), 89 (cf.), 126 (cf.), 159</td>
</tr>
<tr>
<td>caduceus Lapw.</td>
<td>90, 96 (cf.), 126 (cf.), 134, 135, 150 (cf.), 157 (cf.), 159</td>
</tr>
</tbody>
</table>
Species and Synonyms

- **var. ornatus** Elies & W.
- **didymus** Thomas & K. M.S.
- **divaricatus** J. Hall
- **var. rigidus** Lapw.
- **salopiensis** Elies & W.
- **elegans** Carr.
- **var. rigens** Lapw.
- **extensus** J. Hall, cf. Didymograptus extensus
- **forchammeri** Geinitz
- **var. flexuosus** Lapw.
- **furcatus** J. Hall, syn. of Dicranograptus furcatus
 (? graciulis (doubtful reference)
- **gravis** Keble & H.
- **gurleyi** Lapw.
- **havelockensis** Thomas & K. M.S.
- **intortus** Lapw.
- **latusculus** Thomas & K. M.S.
- **moffatensis** Carr.
- **morrisi** Hopk.
- **pumilus** Lapw.
- **ramosus, vide** Dicranograptus ramosus
- **sextans** J. Hall
- **smithi** Rued.

Dichograptus kjerulfi Herrmann,
- syn. of Goniograptus thuraui et G. macer
- **latus** Eth. cf. Didymograptus latus
- **octobrachiatus** J. Hall

- **octonarius** J. Hall
- **sedecimus** Harris & T.

Dicranograptus brevicaulis Elies & W.
- **clingani** Carr.
- **cyathiformis** Elies & W.
- **furcatus** J. Hall
- **var. minimus** Lapw.
- **hians** T. S. Hall
- **var. apertus** T. S. Hall
- **nicholsoni** Hopk.

Reference in Bibliography

- 53, 84, 86, 102 (?), 126 (cf.), 159
- 126
- 47 (cf.), 126, 134, 157, 159
- 150
- 126, 157, 159
- 30, 37, 40, 46, 47 (cf.), 52, 53, 57, 63, 75, 84, 90, 96, 102, 123, 126, 134, 135, 150, 157, 159
- 126
- 34
- 53 (cf.), 84 (aff.), 123 (cf.), 126, 159
- 123, 126
- 75
- 102 (desc.), 114 (cf.), 120
- 70, 84, 114 (cf.)
- 126
- 126, 150 (cf.)
- 126, 157
- 31, 37, 40, 46 (cf.), 70, 84
- 102 (?), 126, 150 (cf.), 159
- 30 (?), 37, 38, 40, 84, 86, 90, 123, 126, 134, 135, 138, 150 (cf.), 157, 159
- 90 (cf.), 150 (cf.)
- 40
- 6, 8, 11, 14, 19, 22, 25, 28, 37, 40, 53, 56, 57, 59, 61, 70, 75, 81, 87, 90, 95, 101, 117, 120, 127, 138, 145, 157
- 25, 40, 77, 81
- 155 (desc.)
- 126, 134, 135, 138, 157
- 157, 159
- 63 (cf.)
- 6, 8, 16, 19, 22, 34, 37, 57, 84, 90 (?), 102, 123 (cf.), 126 (cf.)
- 114, 126
- 52 (desc.), 53, 70, 82, 84, 86, 102, 123, 134, 135, 157, 159
- 62 (desc.), 159
- 52, 53, 57, 63, 84, 90, 102, 123, 126, 134, 135, 157
Species and Synonyms

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference in Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graptolites ramosus J. Hall</td>
<td>6, 8, 11, 13, 16, 19, 22, 30, 37, 40, 56 (cf.), 57, 86, 90, 102, 112, 126</td>
</tr>
<tr>
<td>var. longicaulis Elles & W.</td>
<td>57, 84, 126</td>
</tr>
<tr>
<td>var. semispinifer T. S. Hall</td>
<td>53 (desc.), 56, 84, 86</td>
</tr>
<tr>
<td>var. spinifer Lapw.</td>
<td>123, 126, 157</td>
</tr>
<tr>
<td>rectus Hopk.</td>
<td>111</td>
</tr>
<tr>
<td>zic-zac Lapw.</td>
<td>126 (cf.), 127 (?)</td>
</tr>
<tr>
<td>var. minimus Lapw.</td>
<td>47, 90, 134</td>
</tr>
<tr>
<td>Dictyonema campanulatum Harris & K.</td>
<td>109 (desc.), 134, 135, 157</td>
</tr>
<tr>
<td>D. delicatulum Lapw.</td>
<td>51 (cf.)</td>
</tr>
<tr>
<td>grande T. S. Hall, syn. of D.</td>
<td></td>
</tr>
<tr>
<td>macgillvrayi</td>
<td>24 (desc.), 27, 31 (emend.), 37, 56, 69, 70, 87, 97, 120, 121, 134, 135, 149, 157</td>
</tr>
<tr>
<td>macgillvrayi T. S. Hall</td>
<td></td>
</tr>
<tr>
<td>D. pulchellum T. S. Hall</td>
<td>39 (desc.), 40, 70 (cf.), 87, 97, 134, 135, 157</td>
</tr>
<tr>
<td>D. scitulum Harris & K.</td>
<td>109 (desc.), 121, 134, 135, 157</td>
</tr>
<tr>
<td>Didymograptus abnormis Hsu</td>
<td>155, 157</td>
</tr>
<tr>
<td>D. acriculus Keble & H.</td>
<td>131 (desc.), 138</td>
</tr>
<tr>
<td>D. adamanthinus T. S. Hall</td>
<td>76 (desc.)</td>
</tr>
<tr>
<td>D. affinis Nich.</td>
<td>142</td>
</tr>
<tr>
<td>D. artus Elles & W.</td>
<td>141 (?)</td>
</tr>
<tr>
<td>D. aspersus Harris & T.</td>
<td>155 (desc.), 157</td>
</tr>
<tr>
<td>D. aureus T. S. Hall</td>
<td>76 (desc.), 101, 121, 131, 149 (cf.)</td>
</tr>
<tr>
<td>D. balticus Tull.</td>
<td>76, 157</td>
</tr>
<tr>
<td>D. bifidus T. S. Hall non J. Hall, syn. of D. protobifidus</td>
<td>25, 28, 32, 37, 40, 43, 51, 53, 56, 59, 61, 68, 70, 76, 77, 78, 80, 81, 90, 93, 120, 127, 129 (cf.), 131, 134, 135, 145, 151, 157</td>
</tr>
</tbody>
</table>

Caduceus Salter, syn. of *Isograptus* caduceus cf. *I. gibberulus* and Didymograptus gibberulus var. forcipiformis Rued, syn. of *Isograptus* forcipiformis

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference in Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. cognatus Harris & T.</td>
<td>134 (desc.), 135, 138, 157</td>
</tr>
<tr>
<td>D. compressus Harris & T.</td>
<td>134 (desc.), 135, 138, 157</td>
</tr>
<tr>
<td>D. cuspidatus Rued.</td>
<td>134 (desc.), 135, 138, 155, 157</td>
</tr>
<tr>
<td>D. decens Torn. cf. D. latens</td>
<td>40 (cf.), 76</td>
</tr>
<tr>
<td>D. deflexus Elles & W.</td>
<td>98</td>
</tr>
<tr>
<td>(?) D. denticulatus J. Hall</td>
<td>16, 19</td>
</tr>
<tr>
<td>D. dependulus Harris & K.</td>
<td>121 (desc.)</td>
</tr>
<tr>
<td>D. dilatans T. S. Hall</td>
<td>76 (desc.), 87, 120, 121</td>
</tr>
<tr>
<td>D. distinctus Harris & T.</td>
<td>134 (desc.)</td>
</tr>
<tr>
<td>D. dubitatus Harris & T.</td>
<td>134 (desc.), 135, 157</td>
</tr>
<tr>
<td>Eocaduceus Harris</td>
<td>127 (desc.)</td>
</tr>
<tr>
<td>Eocaduceus Keble M. S., vide D. eocaduceus Harris</td>
<td>111</td>
</tr>
</tbody>
</table>
Species and Synonyms

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference in Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>euodus</td>
<td>156 (cf.)</td>
</tr>
<tr>
<td>extensus</td>
<td>16, 19, 22, 32, 37, 40, 46 (?), 51 (?), 56 (cf.), 59, 61, 68 (?), 70, 76, 77, 87, 95, 101, 120, 127, 135, 145</td>
</tr>
<tr>
<td>forcipiformis</td>
<td>40, 76, 77, 145</td>
</tr>
<tr>
<td>fruticosus</td>
<td>127 (desc.), 155</td>
</tr>
<tr>
<td>furcatus</td>
<td>76 (desc.), 101, 131</td>
</tr>
<tr>
<td>forcipiformis</td>
<td>57 (desc.), 81, 87, 120, 131, 142, 155, 156, 157</td>
</tr>
<tr>
<td>gibberulus</td>
<td>155 (desc.), 157</td>
</tr>
<tr>
<td>headi</td>
<td>6, 8, 13, 19, 155</td>
</tr>
<tr>
<td>hemicyclyus</td>
<td>131 (desc.)</td>
</tr>
<tr>
<td>latens</td>
<td>76 (desc.)</td>
</tr>
<tr>
<td>latus</td>
<td>32, 37, 40, 59, 61 (cf.), 70</td>
</tr>
<tr>
<td>var. aequalis</td>
<td>61 (cf.), 78, 80, 138</td>
</tr>
<tr>
<td>mundus</td>
<td>11, 13, 19, 37, 46 (aff.), 59, 61, 77, 122, 138</td>
</tr>
<tr>
<td>murchisoni</td>
<td>105 (desc.), 120, 121, 129, 131, 134, 135, 138, 156, 157</td>
</tr>
<tr>
<td>nicholsoni</td>
<td>39 (desc.), 40, 51 (cf.), 56, 57, 70, 87, 97, 121, 134, 135, 155, 156 (cf.), 157</td>
</tr>
<tr>
<td>nitidus</td>
<td>76 (desc.)</td>
</tr>
<tr>
<td>nodosus</td>
<td>13 (desc.), 19, 28, 53, 77</td>
</tr>
<tr>
<td>ovatus</td>
<td>76 (desc.), 149 (cf.)</td>
</tr>
<tr>
<td>pantoni</td>
<td>39 (desc.), 40, 51 (cf.), 56, 57, 70, 87, 97, 121, 134, 135, 155, 156 (cf.), 157</td>
</tr>
<tr>
<td>pimorphitus</td>
<td>6, 8, 16, 19, 37</td>
</tr>
<tr>
<td>protobifidus</td>
<td>131, 134, 135, 138, 151, 157</td>
</tr>
<tr>
<td>protocumbens</td>
<td>90, 120, 121, 155, 157</td>
</tr>
<tr>
<td>protocumbens</td>
<td>155 (cf.), 157 (cf.)</td>
</tr>
<tr>
<td>proteronatae</td>
<td>39 (desc.), 87, 97, 121, 135, 167</td>
</tr>
<tr>
<td>procumbens</td>
<td>90, 98, 121, 122 (cf.), 138</td>
</tr>
<tr>
<td>protobifidus</td>
<td>T. S. Hall non J. Hall</td>
</tr>
<tr>
<td>protobifidus</td>
<td>6, 8, 16, 19, 37</td>
</tr>
<tr>
<td>protobifidus</td>
<td>90, 120, 121, 155, 157</td>
</tr>
<tr>
<td>protobifidus</td>
<td>155 (cf.), 157 (cf.)</td>
</tr>
<tr>
<td>protobifidus</td>
<td>39 (desc.), 87, 97, 121, 135, 167</td>
</tr>
<tr>
<td>protobifidus</td>
<td>90, 98, 121, 122 (cf.), 138</td>
</tr>
</tbody>
</table>
Species and Synonyms

<table>
<thead>
<tr>
<th>Species and Synonyms</th>
<th>Reference in Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>v-deflexus Harris</td>
<td>81, 90, 98 (desc.), 120, 127, 135, 137, 157</td>
</tr>
<tr>
<td>v-fractus Salter</td>
<td>28, 98, 138</td>
</tr>
<tr>
<td>vicinus Harris & T.</td>
<td>155 (desc.)</td>
</tr>
<tr>
<td>Diplograptus aculeatus (Lapw.)</td>
<td>53 (cf.), 84 (cf.)</td>
</tr>
<tr>
<td>(Amplexograptus) arctus Elles & W.</td>
<td>123 (cf.)</td>
</tr>
<tr>
<td>angustifolius J. Hall</td>
<td>19, 37, 70, 81 (cf.), 84, 90 (cf.)</td>
</tr>
<tr>
<td>(Glyptograptus) austrodenatus Harris & K., cf. D. inutilis</td>
<td>121 (desc.), 122, 123, 129, 134, 135, 137, 138, 157</td>
</tr>
<tr>
<td>(Orthograptus) bellulus Torn.</td>
<td>42, 126 (cf.)</td>
</tr>
<tr>
<td>(O.) calcarius Lapw.</td>
<td>57, 70, 84, 126, 135, 150, 159</td>
</tr>
<tr>
<td>var. acutus Lapw.</td>
<td>126, 157</td>
</tr>
<tr>
<td>var. basilicus Lapw.</td>
<td>126, 150</td>
</tr>
<tr>
<td>var. priscus Elles & W.</td>
<td>126</td>
</tr>
<tr>
<td>var. tenuicornis Elles & W.</td>
<td>143, 159</td>
</tr>
<tr>
<td>var. vulgatus Lapw.</td>
<td>102, 114, 126, 157</td>
</tr>
<tr>
<td>(O.) carnei T. S. Hall, syn. of D. (O.) truncatus</td>
<td>53, 63, 84, 102, 119</td>
</tr>
<tr>
<td>(Amplexograptus) coelatus Lapw., cf. D. (M.) decoratus</td>
<td>105, 131 (cf.), 134, 145, 156</td>
</tr>
<tr>
<td>(Mesograptus) decoratus Harris & T.</td>
<td>134 (desc.), 135, 138, 156, 157</td>
</tr>
<tr>
<td>(Amplexograptus) differtus Harris & T.</td>
<td>134 (desc.), 138, 157</td>
</tr>
<tr>
<td>(Glyptograptus) dentatus Brongn.</td>
<td>121, 126, 134</td>
</tr>
<tr>
<td>(G.) euglyphus Lapw.</td>
<td>123, 126, 131, 135, 156, 157</td>
</tr>
<tr>
<td>var. sepositus Keble & H.</td>
<td>131 (desc.), 134 (cf.)</td>
</tr>
<tr>
<td>(Mesograptus) foliaceus auct. non. Murch.</td>
<td>14, 30, 31, 37, 38, 40, 46, 47, 51, 53, 56 (cf.), 63, 75, 84, 90, 96, 126</td>
</tr>
<tr>
<td>gnomonicus Harris & K., syn. of Skiagraptus gnomonicus</td>
<td>81 (desc.), 98, 119, 120</td>
</tr>
<tr>
<td>(Mesograptus) ingens T. S. Hall</td>
<td>53 (desc.), 56, 84, 102, 114, 126, 157</td>
</tr>
<tr>
<td>(Orthograptus) insectiformis, var. vagus Thomas & K. M.S.</td>
<td>126</td>
</tr>
<tr>
<td>(Glyptograptus) intersitus Harris & T.</td>
<td>134 (desc.), 135, 156, 157</td>
</tr>
<tr>
<td>inutilis J. Hall, cf. D. (G.) austrodenatus</td>
<td>121 (cf.)</td>
</tr>
<tr>
<td>(Mesograptus) linearis T. S. Hall</td>
<td>86</td>
</tr>
<tr>
<td>(M.) magnus Lapw.</td>
<td>126</td>
</tr>
<tr>
<td>manduramae T. S. Hall</td>
<td>42 (desc.)</td>
</tr>
<tr>
<td>(Mesograptus) modestus Lapw.</td>
<td>42, 126</td>
</tr>
<tr>
<td>(Amplexograptus) modicellus Harris & T.</td>
<td>134 (desc.), 135</td>
</tr>
</tbody>
</table>
Species and Synonyms

mucronatus Eth. non McCoy, cf.
Glossograptus mucronatus, G.
hincksii, syn. of Lasiograp-
tus (T.) etheridgei

(Mesograptus) multidens Elles
& W. .
var. nov. Thomas & K. M.S.
murchisoni (? nom. nud.)
nodosus Harkness, cf. Mono-

(Orthograptus) pageanus Lapw.
(Petalograptus) palmeus J. Hall

(Amplexograptus) perecava-
tus Lapw. .
(Orthograptus) pristis His. . .

quadangularis McCoy, syn. of
Climacograptus riddellensis .
(Orthograptus) quadrimucron-

var. spinigerus Lapw.
rectangularis McCoy, syn. of
Climacograptus riddellensis .
(Glyptograptus) sinuatus Nich. .
(G.) tamariscus Nich. .
tardus T. S. Hall .

(Glyptograptus) teretiusculus Nich.
var. siccatus Elles & W.
thielei T. S. Hall .
(Orthograptus) truncatus Lapw.

var. abbreviatus Elles & W. .
var. intermedius Elles & W. .
var. pauperatus Elles & W. .
var. socialis Lapw. .

(O.) whitfieldi J. Hall .

Gladiolites australis McCoy, syn. of
Stomatograptus australis . . .

Glossograptus acanthus Elles & W. .
crudus Harris & T. .
var. gisbornensis Harris & T. .
fergusoni T. S. Hall (? nom.
nud.) .

Reference in Bibliography

6, 8, 11, 13, 14, 19, 22, 25, 34 (cf.), 47, 90 (?), 96, 126
126, 134, 135, 157
126
53 (cf.)
37, 40
126 (cf.), 157
11, 16, 19, 22, 34 (cf.), 37, 47, 90, 96
117, 120, 131 (cf.), 157
6, 8, 11, 13, 14, 16, 19, 22, 30, 37, 40, 46, 84, 90
6, 8, 11, 13, 19, 22
53, 62, 84, 102, 126, 134, 135, 143, 157, 159
126
47, 98
42, 126, 154, 157
51 (cf.), 84 (cf.), 126, 134, 135, 157
57 (desc.), 84
126, 127, 134, 135, 137, 138, 156, 157
126, 134
52 (desc.), 84, 86
30, 37, 40, 46, 47, 53, 84, 102, 123, 131, 135, 138, 157, 159
126 (cf.), 135, 138, 145, 156 (cf.), 157
134 (desc.), 157
134 (desc.)
53, 84
GRAPTOLOGITES OF AUSTRALIA

Species and Synonyms

hermani T. S. Hall, syn. of G. hermani
holmi Bulman
holnckii Hopk.
mucronatus J. Hall, cf. Diplo-
piilosus Keble & H.
quadririmucronatus, syn. of Diplo-
Goniograptus crinitus T. S. Hall
laxus T. S. Hall, syn. of Sigma-
logani Eth. cf. Loganograptus logani
macer T. S. Hall
palmatus Harris & K.
speciosus T. S. Hall
thureaui McCoy

Isograptus caduceus (Salter), cf. I. gibberulus, Didymograptus caduceus, D. gibberulus

var. divergens Harris
var. horrida Harris
var. imitata Harris
var. lunata Harris
var. maxima Harris
var. maximo-divergens Harris
var. nanus Rued, syn. of I. forcipiformis
var. pertensa Harris
var. primula Harris
var. spinifer (Keble & B.)
var. tenuis Harris
var. velata Harris
var. victoriae Harris
dumosus Harris
forcipiformis (Rued.)
hastatus Harris

Reference in Bibliography

46 (desc.), 57 (cf.), 70, 84, 98, 119, 126, 156 (cf.)
127
37, 46, 89 (?), 119, 126, 131, 134, 135, 138, 156, 157
37, 47, 90 (?), 96
126, 134 (desc.)
62
76 (desc.), 81, 90, 98, 120, 121
76 (desc.), 101, 120
40 (desc.), 46, 59, 61, 70, 76, 77, 81, 87, 90, 117, 120, 121
121 (desc.), 149 (aff.)
76 (desc.), 81, 90, 120, 121, 122
17, 18 (desc.), 22, 25, 28, 37, 40, 44, 57, 59, 61, 68, 69, 70, 77, 81, 87, 90, 98, 112, 120, 121, 134, 135
6, 11, 15, 19, 22, 25, 28, 29, 30, 32, 34 (cf.), 37, 40, 46 (?), 53, 56, 58, 59, 61, 70, 77, 78, 80, 81, 84, 90, 95, 96, 98, 104, 105, 117, 120, 121, 122, 126, 127, 134, 138, 145, 156, 157
15 (cf.), 127 (desc.), 134, 137, 138, 156, 157
127 (desc.)
16 (cf.), 127 (desc.)
127 (desc.), 129, 134, 138, 157
127 (desc.), 134, 138, 157
16 (cf.), 127 (desc.), 138, 157
127 (desc.)
127 (desc.), 129, 138, 157
111, 127
127 (desc.)
127 (desc.)
16 (cf.), 127 (desc.) 138, 157
127 (desc.), 138, 157
81, 90, 120, 121, 122, 127, 131, 137, 138
127 (desc.), 137, 138, 157
Species and Synonyms

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference in Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>manubriatus (T. S. Hall)</td>
<td>76 (desc.), 81, 90, 121, 122, 127, 157</td>
</tr>
<tr>
<td>ovatus (T. S. Hall)</td>
<td>46 (desc.), 84, 98, 123, 126, 127, 131, 138, 156</td>
</tr>
<tr>
<td>Lasiograptus (Thysanograptus)</td>
<td></td>
</tr>
<tr>
<td>etheridgei Harris, cf. Diplograptus mucronatus</td>
<td>90 (?) 96, 98 (desc.), 134, 135, 138, 156, 157</td>
</tr>
<tr>
<td>(Neurograptus) fibratus Lapw.</td>
<td>86 (cf.)</td>
</tr>
<tr>
<td>(N.) margaritatus Lapw.</td>
<td>59, 84, 157</td>
</tr>
<tr>
<td>(Hallograptus) mucronatus J. Hall, cf. Diplograptus mucronatus</td>
<td>156 (cf.), 157</td>
</tr>
<tr>
<td>(H.) proteus Harris & T.</td>
<td>134 (desc.), 135, 138, 157</td>
</tr>
<tr>
<td>Leptograptus antiquus T. S. Hall, syn. of Bryograptus antiquus</td>
<td></td>
</tr>
<tr>
<td>capillaris Carr.</td>
<td></td>
</tr>
<tr>
<td>eastonensis Keble & H.</td>
<td>102, 126, 159 (cf.)</td>
</tr>
<tr>
<td>flaccidus J. Hall</td>
<td>102 (desc.), 126, 131, 157</td>
</tr>
<tr>
<td>var. angustus Keble & B. (non Keble & H.)</td>
<td>53, 70, 84, 86, 102, 126, 131, 145</td>
</tr>
<tr>
<td>var. subjectus Keble & H.</td>
<td>111 (desc.)</td>
</tr>
<tr>
<td>validus Lapw.</td>
<td>102 (desc.), 126</td>
</tr>
<tr>
<td>Loganograptus logani J. Hall</td>
<td>126 (cf.)</td>
</tr>
<tr>
<td>var. australis McCoy</td>
<td></td>
</tr>
<tr>
<td>var. kjerulfi Herrmann</td>
<td>14 (desc.), 22</td>
</tr>
<tr>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Meandrograptus aggestus Harris</td>
<td>127 (desc.)</td>
</tr>
<tr>
<td>tau Harris</td>
<td>127 (desc.), 138</td>
</tr>
<tr>
<td>Monograptus aplini T. S. Hall, emend. Keble & H., syn. of M. exiguis</td>
<td>76 (desc.), 107, 131 (emend.), 136, 154</td>
</tr>
<tr>
<td>barrandei Lapw.</td>
<td>141, 143, 159</td>
</tr>
<tr>
<td>bohemicus (Barr.)</td>
<td>126, 136, 141, 143, 152, 153, 154, 159</td>
</tr>
<tr>
<td>chimaera Barr.</td>
<td>107, 126, 136, 152, 159</td>
</tr>
<tr>
<td>colonus Barr.</td>
<td>107, 118, 126, 136, 159</td>
</tr>
<tr>
<td>var. compactus Wood</td>
<td>126, 132, 153, 154</td>
</tr>
<tr>
<td>comis Wood</td>
<td>126, 154 (cf.)</td>
</tr>
<tr>
<td>concinnus Lapw.</td>
<td>66 (?), 71 (cf.), 107 (cf.), 136 (cf.)</td>
</tr>
<tr>
<td>convolutus His.</td>
<td>118</td>
</tr>
<tr>
<td>crenulatus Torn.</td>
<td>57, 71, 99 (cf.), 104, 107 (cf.), 136 (cf.)</td>
</tr>
<tr>
<td>crinitus Wood</td>
<td>154</td>
</tr>
<tr>
<td>crispus Lapw.</td>
<td>107, 136 (cf.)</td>
</tr>
<tr>
<td>cutellus Torn.</td>
<td>101 (cf.), 107 (cf.)</td>
</tr>
</tbody>
</table>
Species and Synonyms

cyphus Lapw. 67 (?), 71 (cf.), 107 (cf.)
decipiens Torn. 143 (cf.), 159 (cf.)
dubius (Suess) 40 (cf.), 45 (cf.), 53, 57 (cf.), 71 (cf.), 99 (?), 104, 107, 118, 126, 131 (cf.), 136 (cf.), 154
exiguus (Nich.) 76, 107, 118, 126, 131, 141, 143, 154, 159
fimbriatus Nich. 126, 140 (cf.)
flemingi (Salter) 150
galaensis Lapw. 37 (cf.), 126, 139, 154
gregarius Lapw. 126
grostonensis (Nicol) 126
jaculum Lapw. 126
jaekeli Perner 99 (cf.)
leptothea Lapw. 101, 107
lobiferus McCoy 36, 40
ludensis Murch., cf. M. priodon 6, 8, 11, 16, 19, 40
marri Perner 126
mccoyi Lapw. 101, 107 (cf.)
melbourensis Thomas & K. M.S. 126
nilssonii Barr. 118, 126 (cf.) 141, 150 (cf.), 153, 154 (aff.), 159
nodifer Torn. 107
nudus Lapw. 154 (?)
pandus Lapw. 126, 131
priodon Bronn, cf. M. ludensis 19, 37, 40, 71, 76, 107, 118, 126, 136, 154
proetus Barr. 101 (cf.)
riceartonensis Lapw. 71, 107, 111, 118, 128, 136, 139, 154
romeri Barr 107, 126
runcinatus Lapw. 153
scanicus Tull. 131
sedgwicki Portlock 126, 136
spiralis Geinitz 159
var. permensis Keble & H. 126, 131 (desc.), 154
tortilis Perner 143 (cf.), 159
tumescens Wood 150 (cf.)
turriculatus Barr. 76, 107, 118, 131, 136
unicinatus var. micropoma (Jaekel). 139, 154
var. orbatus Wood 139, 154
var. 153
undulatus Elles & W. 143, 159
varians Wood 107, 126, 136, 153, 154
var. pumilus Wood 153
vomerinus (Nich.) 150 (cf.), 154
var. crenulatus (Torn.) 154
vulgaris var. curtus Elles & W. 126
Nemagraptus gracilis J. Hall, vide Coenograptus gracilis 16, 19, 22, 40, 70, 84, 90, 98, 126, 134, 135, 157
Reference in Bibliography

67 (?), 71 (cf.), 107 (cf.)
143 (cf.), 159 (cf.)
40 (cf.), 45 (cf.), 53, 57 (cf.), 71 (cf.), 99 (?), 104, 107, 118, 126, 131 (cf.), 136 (cf.), 154
76, 107, 118, 126, 131, 141, 143, 154, 159
126, 140 (cf.)
150
37 (cf.), 126, 139, 154
126
126
99 (cf.)
101, 107
36, 40
6, 8, 11, 16, 19, 40
126
101, 107 (cf.)
126
118, 126 (cf.) 141, 150 (cf.), 153, 154 (aff.), 159
107
154 (?)
126, 131
19, 37, 40, 71, 76, 107, 118, 126, 136, 154
101 (cf.)
71, 107, 111, 118, 128, 136, 139, 154
107, 126
153
131
126, 136
159
126, 131 (desc.), 154
143 (cf.), 159
150 (cf.)
76, 107, 118, 131, 136
139, 154
139, 154
153
143, 159
107, 126, 136, 153, 154
153
150 (cf.), 154
154
126
16, 19, 22, 40, 70, 84, 90, 98, 126, 134, 135, 157
Species and Synonyms

<table>
<thead>
<tr>
<th>Species</th>
<th>Synonyms</th>
<th>Reference in Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oncograptus biangulatus</td>
<td>Harris & K.</td>
<td>81 (desc.), 98, 122, 127, 137, 138, 146, 157</td>
</tr>
<tr>
<td>Oncograptus</td>
<td>epsilon T. S. Hall</td>
<td>76 (desc.), 81, 90, 98, 112, 127, 138, 146, 157</td>
</tr>
<tr>
<td>Phyllograptus</td>
<td>angustifolius J. Hall</td>
<td>32, 37, 40, 46, 53, 61, 77, 81, 101, 145, 157</td>
</tr>
<tr>
<td>Phyllograptus</td>
<td>anna J. Hall</td>
<td>81, 132 (cf.), 134 (cf.)</td>
</tr>
<tr>
<td>folium et var. typus, syn. of</td>
<td>P. typus</td>
<td>135, 157</td>
</tr>
<tr>
<td>Phyllograptus</td>
<td>ilicifolius J. Hall</td>
<td>121 (desc.), 123 (cf.), 127, 131, 137 (cf.), 138, 148, 157</td>
</tr>
<tr>
<td>Phyllograptus</td>
<td>nobilis Harris & K.</td>
<td>6, 8, 11, 13, 14, 16, 19, 22, 25, 28, 32, 34 (cf.), 37, 40, 51, 53, 56, 57, 59, 61, 68, 70, 77, 81, 87 (cf.), 90 (cf.), 95, 96, 98, 121 (cf.), 127, 157 (cf.)</td>
</tr>
<tr>
<td>Phyllograptus</td>
<td>typus (J. Hall)</td>
<td></td>
</tr>
<tr>
<td>Pleurograptus linearis var.</td>
<td>dispansa Thomas & K. M.S.</td>
<td>126</td>
</tr>
<tr>
<td>Pterograptus</td>
<td>incertus Harris & T.</td>
<td>134 (desc.), 138, 157</td>
</tr>
<tr>
<td>Pterograptus</td>
<td>lyricus Keble & H.</td>
<td>131 (desc.), 138</td>
</tr>
<tr>
<td>Ptilograptus</td>
<td>plumosus J. Hall</td>
<td>51 (cf.)</td>
</tr>
<tr>
<td>Rastrites barrandei</td>
<td>Harkness</td>
<td>16</td>
</tr>
<tr>
<td>Retiograptus</td>
<td>latus Keble & B.</td>
<td>111, 126 (?)</td>
</tr>
<tr>
<td>Retiograptus</td>
<td>pulcherrimus Keble & H.</td>
<td>126, 131 (desc.), 134, 135, 157, 159</td>
</tr>
<tr>
<td>Retiograptus</td>
<td>geinitzianus J. Hall</td>
<td>47 (cf.), 69, 70, 84, 86 (?) , 90, 98, 156</td>
</tr>
<tr>
<td>Retiolites australis, syn. of</td>
<td>Stomatograptus australis (McCoy)</td>
<td></td>
</tr>
<tr>
<td>Retiolites australis, syn. of</td>
<td>R. (P.) nebula</td>
<td>47 (desc.), 53</td>
</tr>
<tr>
<td>Retiolites australis, syn. of</td>
<td>Stomatograptus australis (McCoy). (Plegmatograptus) nebula Elles & W.</td>
<td>47 (desc.), 53, 119</td>
</tr>
<tr>
<td>Schizograptus</td>
<td>incompositus Harris & T.</td>
<td>155 (desc.), 157</td>
</tr>
<tr>
<td>Schizograptus</td>
<td>spectabilis Harris & T.</td>
<td>155 (desc.), 157</td>
</tr>
<tr>
<td>Sigmagraptus</td>
<td>laxus (T. S. Hall)</td>
<td>76, 101, 120, 121, 131, 142</td>
</tr>
<tr>
<td>Sigmagraptus</td>
<td>yandoitensis Harris & T.</td>
<td>155 (desc.)</td>
</tr>
<tr>
<td>Skiagraptus</td>
<td>gnemonicus (Harris & K.) cf. Diplograptus gnemonicus</td>
<td>81 (desc.), 119, 120, 121, 127, 137, 138</td>
</tr>
<tr>
<td>Staurograptus</td>
<td>diffissus Harris & K.</td>
<td>109 (desc.), 120, 121, 134, 135, 157</td>
</tr>
<tr>
<td>Stephanograptus</td>
<td>gracilis J. Hall</td>
<td>37</td>
</tr>
</tbody>
</table>
Species and Synonyms

<table>
<thead>
<tr>
<th>Species</th>
<th>Synonyms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomatograptus australis (McCoy)</td>
<td>Syn. of Clonograptus magnificus, multiplex Nich.</td>
</tr>
<tr>
<td>Strophograptus trichomanes (Rued.)</td>
<td></td>
</tr>
<tr>
<td>Temnograptus magnificus Pritchard,</td>
<td></td>
</tr>
<tr>
<td>Tetragraptus acclinans Keble</td>
<td></td>
</tr>
<tr>
<td>amii Elles & W., syn. of T. serra</td>
<td></td>
</tr>
<tr>
<td>approximatus Nich.</td>
<td></td>
</tr>
<tr>
<td>bigsbyi (J. Hall)</td>
<td></td>
</tr>
<tr>
<td>bryonoides (J. Hall)</td>
<td></td>
</tr>
<tr>
<td>cadus, vide Isograptus cadus</td>
<td></td>
</tr>
<tr>
<td>chapmani Keble & H.</td>
<td></td>
</tr>
<tr>
<td>clarkei Rued.</td>
<td></td>
</tr>
<tr>
<td>clarkfieldi Thomas & K. M.S.</td>
<td></td>
</tr>
<tr>
<td>decipiens T. S. Hall</td>
<td></td>
</tr>
<tr>
<td>var. bipatens, Keble & H.</td>
<td></td>
</tr>
<tr>
<td>defensus Harris & T.</td>
<td></td>
</tr>
<tr>
<td>denticulatus J. Hall</td>
<td></td>
</tr>
<tr>
<td>fruticosus J. Hall</td>
<td></td>
</tr>
<tr>
<td>fruticosus (2-branched), syn. of</td>
<td>Didymograptus pantoni</td>
</tr>
<tr>
<td>fruticosus (3-branched), J. Hall</td>
<td></td>
</tr>
<tr>
<td>fruticosus (4-branched), J. Hall</td>
<td></td>
</tr>
<tr>
<td>harti T. S. Hall</td>
<td></td>
</tr>
<tr>
<td>headi (J. Hall)</td>
<td></td>
</tr>
<tr>
<td>pantoni Eth. non McCoy, vide</td>
<td></td>
</tr>
<tr>
<td>pendens Elles</td>
<td></td>
</tr>
<tr>
<td>projectus T. S. Hall</td>
<td></td>
</tr>
<tr>
<td>quadribrachiatus J. Hall</td>
<td></td>
</tr>
</tbody>
</table>

Reference in Bibliography

<table>
<thead>
<tr>
<th>Reference</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (desc.)</td>
<td>19, 37, 40, 71, 107, 118, 126, 131, 136</td>
</tr>
<tr>
<td>81, 120, 121</td>
<td></td>
</tr>
<tr>
<td>23, 27</td>
<td></td>
</tr>
<tr>
<td>87 (desc.), 101 (cf.), 120, 121, 131, 134, 135, 155, 156 (cf.), 157</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>51, 53, 56, 57, 64, 69, 70, 77, 81, 87, 91, 92, 93, 97, 120, 121, 127, 130, 131, 134, 135, 137, 155, 157</td>
<td></td>
</tr>
<tr>
<td>13, 29, 145</td>
<td></td>
</tr>
<tr>
<td>11, 13, 14, 19, 22, 25, 28, 29, 53, 56, 59, 61, 70, 77, 87, 95, 101, 127, 134, 135</td>
<td></td>
</tr>
<tr>
<td>131 (desc.), 155 (?)</td>
<td></td>
</tr>
<tr>
<td>77, 88</td>
<td></td>
</tr>
<tr>
<td>126, 157</td>
<td></td>
</tr>
<tr>
<td>11 (cf.), 39 (desc.), 40, 56, 57, 59, 69, 70, 87, 91, 92, 97, 101, 119, 120, 121, 123, 129, 130, 131, 134, 135, 137, 149, 156 (cf.), 157</td>
<td></td>
</tr>
<tr>
<td>131 (desc.)</td>
<td></td>
</tr>
<tr>
<td>134 (desc.)</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>19, 22, 25, 28, 37, 40, 53, 57, 59, 68, 69, 70, 81, 87, 90, 129, 131, 138, 155, 157</td>
<td></td>
</tr>
<tr>
<td>13, 14, 51, 53, 56, 61, 70, 77, 81, 93, 101, 120, 121, 127, 130, 134, 135, 157</td>
<td></td>
</tr>
<tr>
<td>13, 16, 51, 53, 70, 77, 81, 90, 93, 101, 120, 121, 130, 131, 134, 135, 156, 157</td>
<td></td>
</tr>
<tr>
<td>76 (desc.), 87, 101, 121, 149 (cf.), 155</td>
<td></td>
</tr>
<tr>
<td>18, 22, 37, 40, 127 (?), 138</td>
<td></td>
</tr>
<tr>
<td>53, 56, 59, 61, 69, 70, 77, 81, 87, 90, 101, 120, 121, 145, 157</td>
<td></td>
</tr>
<tr>
<td>40 (desc.)</td>
<td></td>
</tr>
<tr>
<td>6, 8, 11, 13, 14, 19, 22, 25, 27, 28, 32, 37, 40, 51, 53, 56 (cf.), 57, 59, 61, 68, 69, 70, 77, 81, 87, 90, 101, 120, 121, 127, 130, 131, 134, 135, 137, 155, 156 (cf.), 157</td>
<td></td>
</tr>
</tbody>
</table>

GRAPTOLITES OF AUSTRALIA
Species and Synonyms

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference in Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>serra (Brongn.)</td>
<td>29, 37, 40, 51, 53, 56, 57, 58, 59, 61, 68, 69, 70, 77, 81, 87, 90, 95, 101, 121, 122, 127, 134 (cf.), 135 (cf.), 137, 138, 145, 157</td>
</tr>
<tr>
<td>similis (J. Hall) cf. T. bigsbyi</td>
<td>77, 81, 87, 120, 121, 127, 131</td>
</tr>
<tr>
<td>tabidus Keble & B.</td>
<td>108 (cf.), 126 (cf.)</td>
</tr>
<tr>
<td>triograptoides Harris & T.</td>
<td>155 (desc.)</td>
</tr>
<tr>
<td>vestrogothus Torn.</td>
<td>157</td>
</tr>
<tr>
<td>volitans Harris & T.</td>
<td>155 (desc.)</td>
</tr>
<tr>
<td>whitelawi T. S. Hall</td>
<td>76 (desc.)</td>
</tr>
<tr>
<td>Thallograptus succulentus (Rued.)</td>
<td>147 (cf.)</td>
</tr>
<tr>
<td>Thamnograptus capillaris Emmons.</td>
<td>98, 127 (cf.)</td>
</tr>
<tr>
<td>typus J. Hall</td>
<td>25, 37, 98</td>
</tr>
<tr>
<td>Triaenograptus neglectus T. S. Hall</td>
<td>76 (desc.), 112</td>
</tr>
<tr>
<td>Trichograptus fergusoni T. S. Hall</td>
<td>70 (desc.), 134, 155, 157</td>
</tr>
<tr>
<td>immotus Harris & T.</td>
<td>134 (desc.), 157</td>
</tr>
<tr>
<td>Trigonograptus ensiformis J. Hall</td>
<td>40, 90, 98, 105, 120, 121, 127, 134 (cf.), 137, 138, 143, 156, 157</td>
</tr>
<tr>
<td>wilkinsoni T. S. Hall</td>
<td>40 (desc.), 82, 98</td>
</tr>
<tr>
<td>Trochograptus australis Harris & T.</td>
<td>154 (desc.)</td>
</tr>
<tr>
<td>diffusus Holm.</td>
<td>154 (cf.)</td>
</tr>
<tr>
<td>insignus Harris & T.</td>
<td>154 (desc.)</td>
</tr>
</tbody>
</table>

Hydroida.

Some hydroid genera of uncertain systematic relationship, such as *Mastigograptus* and *Chaunograptus*, have been regarded as primitive graptoloids or dendroids. Bulman (158) points out that “some of the Acanthograptoids and in particular the geologically early *A. priscus* recall in size and general appearance the Cambrian hydroids *Archaeolafoea* and *Archaeocryptolaria* of Chapman and Thomas (147), but in these there is at present no indication of polymorphism (such, indeed, would be of very different character if their relation to the Perisiphonidae is correctly assumed) and the resemblance is probably superficial only.”

Chapman and Thomas (147), extending earlier studies (82) record from Cambrian shales and mudstones in Central Victoria the following hydroid forms which are referred by them to the calyptrablast families of Campanulariidae and Idiidae, though certain of the genera concerned have been classed by Ruedemann under the Dendroididea, in which *Ptilograptus* and *Thallograptus*, cited among the graptolites, have been retained there.

<table>
<thead>
<tr>
<th>Species and Synonyms</th>
<th>Reference in Bibliography.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthograptus candelabrum Chapman & T.</td>
<td>147</td>
</tr>
<tr>
<td>Archaeocryptolaria flabelloides</td>
<td>147</td>
</tr>
<tr>
<td>Chapman & T.</td>
<td></td>
</tr>
<tr>
<td>recta Chapman</td>
<td>82, 85, 147</td>
</tr>
<tr>
<td>var. flexilis Chapman & T.</td>
<td>147</td>
</tr>
<tr>
<td>skeatsi Chapman</td>
<td>82, 85, 147</td>
</tr>
<tr>
<td>Archaeolafoea longicornis Chapman</td>
<td>82, 85, 147</td>
</tr>
<tr>
<td>monegetae (Chapman)</td>
<td></td>
</tr>
<tr>
<td>serialis Chapman & T.</td>
<td>147</td>
</tr>
<tr>
<td>Cactograptus crassus Rued.</td>
<td>147</td>
</tr>
<tr>
<td>flexispinosus Chapman & T.</td>
<td>147</td>
</tr>
<tr>
<td>plumigerus Chapman & T.</td>
<td>147</td>
</tr>
<tr>
<td>Chaunograptus gemmatus Rued.</td>
<td>147</td>
</tr>
<tr>
<td>Mastigograptus arundinaceus (J. Hall)</td>
<td>147</td>
</tr>
<tr>
<td>circinalis Rued.</td>
<td>147</td>
</tr>
<tr>
<td>cf. gracillimus (Lesquereux)</td>
<td>147</td>
</tr>
<tr>
<td>monegetae Chap., syn. of Archaeolafoea monegetae</td>
<td>82, 85</td>
</tr>
<tr>
<td>tenuiramosus (Walcott)</td>
<td>147</td>
</tr>
<tr>
<td>Protohalecium hallianum Chapman & T.</td>
<td>147</td>
</tr>
<tr>
<td>Sphenoeicum discoidalis Chapman & T.</td>
<td>147</td>
</tr>
<tr>
<td>filicoides (Chapman)</td>
<td>82, 85</td>
</tr>
</tbody>
</table>

Locality Index.

This index gives the locality or district mentioned by the author of the paper, the number of which in the Bibliography, appears opposite that locality. In most papers more precise details are given.

Localities outside Victoria are indicated by the initial letters of the State in which they are.

The following abbreviations are used:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co.</td>
<td>County</td>
</tr>
<tr>
<td>Ck.</td>
<td>Creek</td>
</tr>
<tr>
<td>Mt.</td>
<td>Mount</td>
</tr>
<tr>
<td>N.S.W.</td>
<td>New South Wales</td>
</tr>
<tr>
<td>Par.</td>
<td>Parish</td>
</tr>
<tr>
<td>Q.</td>
<td>Queensland</td>
</tr>
<tr>
<td>R.</td>
<td>River</td>
</tr>
<tr>
<td>Rd.</td>
<td>Road</td>
</tr>
<tr>
<td>Rf.</td>
<td>Reef</td>
</tr>
<tr>
<td>Rly.</td>
<td>Railway</td>
</tr>
<tr>
<td>Tas.</td>
<td>Tasmania</td>
</tr>
</tbody>
</table>

Symbols after some localities (thus, Ba 78) are those used on the Geological Quarterly Sheets of the area to fix fossil localities; e.g., Ba 78 refers to a locality in Barker Street, Castlemaine, so shown on Quarter Sheet of the Castlemaine area.
GRAPTOLITES OF AUSTRALIA

Aberdeen Hill, Castlemaine 81
Aberfeldy 53
Accommodation Ck., E. Gippsland ... 70, 84, 135
Alexander (N.S.W.) 34, 47
Alexandra 37, 139, 140
Antimony Mine (Blackwood) 120, 131
Ariah Park (N.S.W.) 89
Aroona Shaft, Lauriston 129
Asylum Ck., nr. Sunbury 126
Avis Mt. 53, 84
Axe Ck. 138
Axedale 127, 135, 138
Bacchus Marsh 14, 91, 135
Back Ck. (Coimadai) 32
Bagshot 127, 138
Bald Hill Quarry (Dromana) 57, 76
Bald Hill (Waratah North) 51
Ballanya Hill (N.S.W.) 141
Ballan 135
Ballan-Bacchus Marsh Rd. 122
Ballarat 64, 70
Ballarat-Melbourne Rd. 122
Balliang 14 (Sd 5)
Ballieston 154
Bahnarring 51, 87
Barfold 129
Barker Street (Castlemaine) 14 (Ba 78, 81)
Barker's Ck. 127
Barkstead 87
Barp 59, 70
Barringo Ck., nr. Riddell 123
Basin Ck., Coimadai 32, 76, 90
Bathurst (N.S.W.) 41
Batman's Bay (N.S.W.) 120
Baynton 16 (Bb 34)
Becalla 59, 69, 70, 135
Bell's Clear Ck., Aberfeldy 53, 104
Belle Vale (N.S.W.) 45, 150
Bendigo 14, 18, 28, 37, 53, 57, 59, 70, 76, 77, 87, 93, 120, 130, 144
Bendigo East 129, 130, 131, 134
Bendigo-Heathcote Rly. 120
Berriedale (N.S.W.) 62, 75
Bet Bet 70
Beveridge 126
Bittern (see also Turner's Quarry) 127
Black R., nr. Woods Point 53, 84
Blackwood 101, 129
Bodalla (N.S.W.) 118
Boggy Ck., nr. Gisborne 90
Bolinda 123, 126
Boolara 87, 135
GRAPTOLITES OF AUSTRALIA

Bowning Ck. (N.S.W.) 150
Bracken Gully, nr. Riddell 123
Brayton (N.S.W.) 141
Brisbane Ranges 127, 134, 135, 137, 138
Broadhurst Ck. 154
Broadmeadows 126
Bromley 70, 87
Bulla 14 (Ba 62), 16, 37, 88, 119, 126
Bullaroo (Par.) 70, 87, 129
Bullarto 53, 129, 135
Bulldog Ck., nr. Dromana 51, 87, 120
Bullengarook 90, 127, 138
Buller Ck. 156
Bungonia (N.S.W.) 143
Bungonia-Goulburn Rd. (N.S.W.) 141, 143
Bunya (Q.) 120
Burns Rf., Castlemaine 81, 120
Buttlejork 14 (Ba 67), 90, 131 (Ba 67), 134 (Ba 67)
Bylands 154
Cabanandra 37, 84, 135
Cable's Ck., nr. Woods Point 154
Campaspe R. 129
Campbell's Ck., Castlemaine 81
Campbelltown 69, 70, 127, 129, 135, 155
Campbelltown (Par.) 129
Cape Conran 135
Cargerie, nr. Elaine 14, 135
Castlemaine 90
Cataract Gully, Gisborne 123
Cemetery Gully, Castlemaine 81
Charley's Ck., nr. Riddell 123
Cherry's Saw Mills, Gisborne 90
Chewton 28, 37, 70, 76, 81, 120, 129, 155, 157
Chewton-Lyonville Anticlinorium 129
Chinaman's Ck., Castlemaine 81, 120, 127
Chintin (Par.) 154
Clarendon (N.S.W.) 41
Clarendon (Vic.) 70, 81
Clarkfield 123, 126, 135
Clydesdale 129
Colargo (N.S.W.) 75
Cobaw 134, 135
Cockatoo Ck., Coimadai 32
Cockatoo Gully, Gisborne 37, 90
Coimadai 32, 76, 81, 95
Coliban R. (Kangaroo Ck.) 129
Column Gully 126
Conglomerate Ck. 90, 123
Conran, Cape 135
Cookbundoon Mt. (N.S.W.) 141
Coolbarghurk 14 (W.L. S2), 37, 81 (W.L. S2)
Cooma (N.S.W.) 66, 75, 116
Connell’s Mine, Spargo Ck. 131
Costerfield 154
Cravensville 38, 84, 135
Creswick 70
Currawang (Par., N.S.W.) 34, 47
Currowong *(vide Currawang)*

Daphne Rf., Castlemaine 76, 81
Dargile .. 153
Dark R. (Dart R.) 38, 84
Darlington 14, (Bb 41), 16 (Bb 32)
Darook .. 59
Darriwil .. 14 (W.L. S1), 18, 28, 37, 81

Darraweitguim 135, 154
Dart River (Dark R.), Benamba 38, 84
Dartsmouth 53
Daylesford 28, 37, 53, 59, 61, 76, 81, 129, 135
Dean (Rocky Lead) 70, 87
Dean (Par.) 129
Dedick .. 14, 22, 37
Dedick Mt. 14, 84, 135
Deep Ck. (Bulla-Sunbury area) 126
Deep Creek (Bullarook) 70
Deep Ck. (Coimadai) 32
Derrengullen (Par., N.S.W.) 132, 150
Diamond Ck. 74
Digger’s Rest 126
Dingo Ck., nr. Aberfeldy 53, 84
Dirty Dick’s Gully, Castlemaine 81
Djerriwarrh 90
Dolly’s Ck., nr. Elaine 59
Donnelly’s Ck. 104
Doomburrim (Par.) 135
Dromana .. 51, 53, 87
Drummond 129
Dunolly ... 53, 57, 69, 70, 135

Eastern *(vide Easton)*
Easton, Mt., Aberfeldy dist. 53, 59, 84, 101, 119, 135
Ebery’s (east of Campbelltown) 129
Edgecombe (Par.) 129
Edi .. 53, 84, 135
Edwards R., tributary of Goulburn R. 135
Eganstown 70
Eight-mile Ck., Howqua R. 83, 131, 156
Elaine .. 70, 135
Elphinstone 81, 129
Emu Ck. (Bendigo East) 130
Emu Ck. Race (Bendigo East) 130, 138
Emu Ck. (Bulla-Sunbury area) 126
Emu Ck. (Gisborne) 84, 123
Emu Ck. (Sydenham) .. 123
Energetic Rf., eastern Talbot 129
Enoch's Point ... 131, 135, 136, 154
Eppalock ... 138
Epsom ... 130, 134
Eureka Mt. ... 81, 129
Evans Ck., nr. Sunbury 14 (Ba 66), 90, 126
Expedition Pass, between Chewton and Elphinstone 129, 135
Expedition Pass Synclinorium 129
Faraday ... 129
Federal Territory ... 114
Fentiman's Rf., Maldon 129
Fish Ck. ... 135
Forbes (Par.) .. 120, 154
Forest Ck. ... 81, 129
Franklin (Par.) ... 81, 129
Franklinford .. 129
Fryers-Cheutron Rd. .. 81, 129
Fryerstown ... 81, 129, 134
Gap (The), Yalgogrin, N.S.W. 89
Geygedzerick Hill (N.S.W.) 78
Gibbo Ck., Benambra .. 135
Gisborne .. 14 (Ba 71), 28, 76, 90 (Ba 69, 70, 71), 123, 126, 127, 129, 135, 138, 155
Gisborne (Old) .. 81
Gladstone (Q.) .. 118
Glendart .. 38
Glendoon Ck., nr. Gisborne 90
Glendoon Spur, Gisborne 90, 127
Glenhope ... 14, 16
Glenluce ... 129
Glenlyon .. 129
Goldie ... 97
Goldsborough .. 59, 60, 129
Golconda Mine, Yandoit 129
Goodman's Ck., nr. Bullengarook 90
Goulburn (N.S.W.) .. 141, 159
Graptolite Gully, Aberfeldy 53
Greendale .. 101
Greenwich Park, Towrang Rd. (N.S.W.) 141
Grice's Ck., nr. Mornington 51
Guildford ... 81, 134, 135, 137
Guildford Plateau Mine 137
Guildford-Strangways Rly. 81, 120
Guildford-Strangways Rd. 81, 120, 138
Gutamurrh Ck., Croajingolong 22
Heathcote ... 135, 153, 154
Heathcote Rly. .. 129
Hepburn ... 129
Hoddle Ck., Buln Buln 135
Holcombe .. 14 (Ba 76), 129 (Ba 77)
Holden ... 14 (Ba 62), 37, 126 (Ba 61, 62, 63)
Holden Mt. 90
Howe's Ck., Mansfield 101
Howqua R .. 83, 127, 131, 134, 135, 138, 156
Hume (N.S.W.) 120
Huntly ... 129, 131, 134, 138
Inglewood 69, 70, 81, 135
Inglisfon .. 76, 81, 122, 138
Innisfail (Q.) 118
Ironbark Ck., nr. Inglisfon 122
Ironstone Mine, Edgecombe 129
Isabella Rf., Bendigo 130
Jackson's Ck. (Bulla-Sunbury area) 16 (Ba 64), 126 (Ba 61, 62, 63, 64, 67)
Jackson's Ck. (Gisborne) 14 (Ba 62, 67), 123 (Ba 64, 67), 127, 131 (Ba 67), 134 (Ba 67)
Jackson's Gully (Bulla-Sunbury area) ... 126
Jamieson's Special Survey, Dromana 53
Jordan R., Aberfeldy dist. 53, 57, 71, 84, 104, 110, 119, 120, 135, 139
Kangaroo Ck. (Coliban R.) 14 (Ba 80), 37, 81 (Ba 80, 81), 129, 131
Kangaroo Rf., Holcombe 129
Kangerong 53, 57
Keilor ... 16 (Ba 56, 57), 71, 76, 120, 126, 131, 136
Kerrie ... 59, 84, 92, 123
Kewinton .. 70, 84
Killingsworth 139, 154
Kilmore ... 136, 154
Kilmore Ck. 16 (Bb. 20)
Kilmore Gap 97
Kilmore (Springfield) 154
Kilmore-Wandong Rd. 154
Kimlochewe 126
Knowsley East 51
Konagaderrer Ck., Bulla dist. 126
Kororoit (Western) Ck., nr. Sunbury 90
Korweingubura 70
Kosciusko Plateau (N.S.W.) 62
Laanecoorie 69, 70
Lancefield 14 (Bb. 27, 28, 29), 23, 27, 31, 37, 87, 97, 109, 119, 120, 127, 134
Lancefield Junction 90
Langwarrin 101
Lawson (Par., N.S.W.) 34, 47
<table>
<thead>
<tr>
<th>Location</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauriston</td>
<td>129</td>
</tr>
<tr>
<td>Lerderderg R.</td>
<td>14, 101, 131</td>
</tr>
<tr>
<td>Leichardt</td>
<td>59</td>
</tr>
<tr>
<td>Leigh R.</td>
<td>14 (Fe 17, W.L.S. 5), 37</td>
</tr>
<tr>
<td>Leitch's Ck., E. Talbot</td>
<td>129</td>
</tr>
<tr>
<td>Limestone Ck (Strangways)</td>
<td>81, 137</td>
</tr>
<tr>
<td>Limestone Ck. (Yandoit)</td>
<td>127</td>
</tr>
<tr>
<td>Lisle (T.)</td>
<td>36</td>
</tr>
<tr>
<td>Little Boy's Ck., Aberfeldy dist.</td>
<td>53, 104</td>
</tr>
<tr>
<td>Little Jordan Ck., Aberfeldy dist.</td>
<td>57</td>
</tr>
<tr>
<td>Llanelly</td>
<td>69, 70, 87</td>
</tr>
<tr>
<td>Loddon R.</td>
<td>14 (Ba 76), 37, 137</td>
</tr>
<tr>
<td>Loddon R. (Upper)</td>
<td>28</td>
</tr>
<tr>
<td>Lost Gully, Castlemaine</td>
<td>76, 81, 155</td>
</tr>
<tr>
<td>Loyola</td>
<td>92, 101</td>
</tr>
<tr>
<td>Lyonville</td>
<td>129</td>
</tr>
<tr>
<td>Macclesfield</td>
<td>40, 71, 76</td>
</tr>
<tr>
<td>Macedon</td>
<td>76, 84, 92, 127</td>
</tr>
<tr>
<td>Macedon (Lower)</td>
<td>81</td>
</tr>
<tr>
<td>Macedon (Upper)</td>
<td>90</td>
</tr>
<tr>
<td>McIvor Rd. (Bendigo-Axedale Rd.)</td>
<td>130, 131, 138</td>
</tr>
<tr>
<td>McIvor Ck.</td>
<td>135</td>
</tr>
<tr>
<td>McKenzie's Hill</td>
<td>81, 120, 127</td>
</tr>
<tr>
<td>McLaughlin's Ck.</td>
<td>37, 84</td>
</tr>
<tr>
<td>McPherson's Gully, Steiglitz</td>
<td>127</td>
</tr>
<tr>
<td>Maldon</td>
<td>129</td>
</tr>
<tr>
<td>Maldon Rly.</td>
<td>81</td>
</tr>
<tr>
<td>Malmsbury</td>
<td>129</td>
</tr>
<tr>
<td>Mandurama (N.S.W.)</td>
<td>42, 47</td>
</tr>
<tr>
<td>Mandurang</td>
<td>138</td>
</tr>
<tr>
<td>Mansfield</td>
<td>70, 95, 96, 135</td>
</tr>
<tr>
<td>Manton (Par., N.S.W.)</td>
<td>150</td>
</tr>
<tr>
<td>Marong</td>
<td>59, 69, 70, 135</td>
</tr>
<tr>
<td>Martulan (N.S.W.)</td>
<td>65, 120</td>
</tr>
<tr>
<td>Maryborough</td>
<td>69, 70, 135</td>
</tr>
<tr>
<td>Matlock</td>
<td>31, 46, 84, 128</td>
</tr>
<tr>
<td>Maude</td>
<td>37, 135</td>
</tr>
<tr>
<td>Melbourne</td>
<td>37, 107, 154</td>
</tr>
<tr>
<td>Melton</td>
<td>81</td>
</tr>
<tr>
<td>Mitchell's Falls, Barfold</td>
<td>129</td>
</tr>
<tr>
<td>Moliagul</td>
<td>53</td>
</tr>
<tr>
<td>Monegeeta</td>
<td>123, 135, 147</td>
</tr>
<tr>
<td>Monegeeta North</td>
<td>80, 85</td>
</tr>
<tr>
<td>Monk's Hill (The Monk) Castlemaine</td>
<td>81, 129</td>
</tr>
<tr>
<td>Moolort</td>
<td>70</td>
</tr>
<tr>
<td>Moorooduc</td>
<td>58</td>
</tr>
<tr>
<td>Mornington</td>
<td>51, 87</td>
</tr>
<tr>
<td>Mornington Peninsula</td>
<td>81, 135</td>
</tr>
<tr>
<td>Morumbateman (Par., N.S.W.)</td>
<td>150</td>
</tr>
<tr>
<td>Muckleford</td>
<td>81, 127, 129</td>
</tr>
<tr>
<td>Muckleford-Bullarto Synclinorium</td>
<td>129</td>
</tr>
<tr>
<td>Location</td>
<td>Reference Numbers</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Muckleford Ck.</td>
<td>81, 129, 137</td>
</tr>
<tr>
<td>Muckleford Rly.</td>
<td>120</td>
</tr>
<tr>
<td>Muudoonen (Par., N.S.W.)</td>
<td>150</td>
</tr>
<tr>
<td>Murwillumbah (N.S.W.)</td>
<td>118</td>
</tr>
<tr>
<td>Myrtle</td>
<td>84</td>
</tr>
<tr>
<td>Myrtleford</td>
<td>57, 59, 70, 84</td>
</tr>
<tr>
<td>Narrabri</td>
<td>135</td>
</tr>
<tr>
<td>Narrandera (N.S.W.)</td>
<td>115</td>
</tr>
<tr>
<td>Neualleigh (Q.)</td>
<td>120</td>
</tr>
<tr>
<td>Newbury</td>
<td>129</td>
</tr>
<tr>
<td>New Chum Gully, Castlemaine</td>
<td>81</td>
</tr>
<tr>
<td>Newham</td>
<td>14 (Bb 29), 16, 37, 81, 84, 92, 129, 134</td>
</tr>
<tr>
<td>Newstead</td>
<td>87, 129, 135, 137</td>
</tr>
<tr>
<td>Nowa Nowa</td>
<td>70, 84, 135</td>
</tr>
<tr>
<td>Old Snake Gully Mine, Trentham</td>
<td>129</td>
</tr>
<tr>
<td>Omoo</td>
<td>123</td>
</tr>
<tr>
<td>One mile Ck., Enoch's Point</td>
<td>131, 135</td>
</tr>
<tr>
<td>Orange (N.S.W.)</td>
<td>47</td>
</tr>
<tr>
<td>Owens R.</td>
<td>118</td>
</tr>
<tr>
<td>Panawacket</td>
<td>53, 59, 70</td>
</tr>
<tr>
<td>Parkes (N.S.W.)</td>
<td>120</td>
</tr>
<tr>
<td>Patuan</td>
<td>14 (Bb 1, 2), 16, 37</td>
</tr>
<tr>
<td>Peak Hill (N.S.W.)</td>
<td>35</td>
</tr>
<tr>
<td>Phosphate Hill (Mansfield)</td>
<td>91, 92, 135</td>
</tr>
<tr>
<td>Phosphate Mine (Howe's Ck.)</td>
<td>101</td>
</tr>
<tr>
<td>Piper's Ck., Redesdale dist.</td>
<td>14 (Bb 44, 45), 16, 129</td>
</tr>
<tr>
<td>Point Danger (Q.)</td>
<td>118</td>
</tr>
<tr>
<td>Poisonar</td>
<td>59</td>
</tr>
<tr>
<td>Premier Mine, E. Talbot</td>
<td>129</td>
</tr>
<tr>
<td>Providence Gully, Yarra Track</td>
<td>155</td>
</tr>
<tr>
<td>Pyret Ck., Bullengarook dist.</td>
<td>90</td>
</tr>
<tr>
<td>Pyret Ranges</td>
<td>129</td>
</tr>
<tr>
<td>Quartz Hill, Castlemaine</td>
<td>81</td>
</tr>
<tr>
<td>Queenstown (N.S.W.)</td>
<td>114</td>
</tr>
<tr>
<td>Raymond Gully, Yarra Track</td>
<td>135</td>
</tr>
<tr>
<td>Redcastle</td>
<td>154</td>
</tr>
<tr>
<td>Redesdale</td>
<td>37</td>
</tr>
<tr>
<td>Red Rock, Newcastle</td>
<td>90</td>
</tr>
<tr>
<td>Redcliff</td>
<td>88, 135</td>
</tr>
<tr>
<td>Redcliff's Ck.</td>
<td>14 (Ba 87), 90 (Ba 87), 129, 128 (Ba 87), 131, 136, 138, 139, 140, 151, 157</td>
</tr>
<tr>
<td>Red Range (Castlemaine)</td>
<td>88</td>
</tr>
<tr>
<td>Red K. (T.)</td>
<td>48, 138</td>
</tr>
<tr>
<td>River Marine Gully, Mt. Wellingrove</td>
<td>138</td>
</tr>
<tr>
<td>Keeley</td>
<td>129</td>
</tr>
<tr>
<td>Keeley Lead</td>
<td>70, 87</td>
</tr>
<tr>
<td>Keeley Wayehilles Ck., Lancerfield dist.</td>
<td>120</td>
</tr>
<tr>
<td>Kerosyne</td>
<td>82, 85, 90, 120, 123, 133, 137, 139, 153, 157</td>
</tr>
</tbody>
</table>
GRAPTOLITES OF AUSTRALIA

Romsey Rd. ... 90
Royal Park ... 154
Rum Ck., Blackwood 101
Running Ck., Sunbury dist. 126
Rupertswood, Sunbury 126
Russell's Rf., E. Talbot 129
Ryan's Ck., Myrrhee 37, 53, 84

Saltwater R. ... 14 (Ba 71), 63, 90 (Ba 69, 70, 71), 134 (Ba 29)

Sandhurst ... 138
Sandon (Par.) ... 155
Sandy Ck., nr. Gisborne 90, 123
Sandy's Ck., Tabberabbera 37, 46, 84, 127, 131, 135
San Remo ... 51
Scott's Gully, Castlemaine 81
Sebastian ... 70, 76, 135
Sebastopol Diggings, Castlemaine dist. 129
Sebastopol Hill .. 81
Sedgwick .. 134, 138
Selma, Mt. ... 53, 84
Slocombe's Corner, Gisborne 90
Shepherd's Hut Ck. 129
Shoalhaven Gorge (N.S.W.) 141
Silverdale (N.S.W.) 150
Sloss's Gully, Inglinton 122
Smeaton ... 69, 70, 129
Snake Gully, Trentham 129
Snake R., headwaters Goulburn R. 135
Snowy R. .. 22, 84
South Yarra .. 40, 67, 71
Specimen Hill (Chewton-Fryerstown) 129, 134
Spring Ck., Daylesford 59
Springfield .. 154
Spring Gully Aqueduct, Bendigo 130
Spring Hill, nr. Woods Point 53, 84
Spring Plains, Redesdale dist. 14 (Bb 46), 28, 37
Stander's Ck., nr. Woods Point 51
Steele's Gully, Castlemaine 81
Steiglitz ... 76, 77, 81, 127, 135
Stockyard Ck. (N.S.W.) 47
Strangways .. 135
Strangways-Guildford Rd. 81, 120
Strathfieldsaye 130, 134, 138
Studley Park, Melbourne 107, 120, 154
Sunbury .. 37, 126, 131
Surprise Gully, nr. Springfield 134
Sutherland's Ck., Steiglitz dist. 14 (W.L.S. 1), 81 (W.L.S. 1, 3)
Sydenham .. 88, 126, 135
Sydney-Melbourne Rd., Bungonia (N.S.W.) 141, 143
Tabberabbera .. 113
Talbot (Co.) ... 129
Tallong (N.S.W.) ... 63, 65, 86, 120, 141
Taradale ... 129
Taradale-Lauriston Anticlinorium 129
Taralga (N.S.W.) ... 152
Tara Range .. 84
Tarilta .. 14 (Ba 80), 28, 37, 76, 81 (Ba 80, 81)
Tarnagulla .. 59, 70, 87, 135
Tarrangower Ck., E. Talbot 129
Tarwin South ... 51, 135
Ten-mile Ck., Wood’s Point District . 53
Thomson R ... 53, 57, 71, 104, 119, 139
Thoona .. 37, 84, 135
Tingaringi (Par., N.S.W.) 34, 47
Tolwong (N.S.W.) .. 86, 159
Tomingley (N.S.W.) .. 35, 47, 120
Toolleen .. 135
Toolern Vale ... 90
Tophet, Mt. ... 90
Towrang (N.S.W.) ... 141
Trentham ... 53, 129
Trentham-Lyonville Anticlinorium 129
Trentham-Chewton Anticlinorium 129
Tungamah ... 30, 38, 84, 135
Turner’s Quarry, Bittern 127, 131, 134, 138, 156
Turritable Ck., Macedon 90
Tylden ... 129
Useful, Mt. ... 104, 120
Vaughan .. 51, 81, 129
Victoria Gully, Castlemaine 81, 120, 129
Vincent Street Bridge, Castlemaine . 81
Waanyarra .. 70
Walhalla ... 110, 120, 136
Walwa (Walwal) ... 30, 84
Wambrook Ck. (N.S.W.) 75
Wandong-Kilmore Rd. 154
Waratah North ... 51
Wareek ... 59, 135
Watchbox Ranges 14 (Bb 43), 16, 37
Watson’s Ck. (Dalrymple’s) 90
Wattle Gully, Castlemaine 81, 120
Wattle Hill, Newham 14 (Bb 29)
Wedderburn ... 70
Wellington, Mt. ... 52, 70, 84, 119, 135
Wellsford .. 138
Wesley Hill, Castlemaine East 129
Welshman’s Rf., nr. Maldon 129
Werona Synclinorium 129
Werribee Gorge .. 37, (Bd 3), 135
Werribee River ... 122, 131
White Hills ... 130
White Horse Gully, Castlemaine 81
Whitfield 135
Whipstick 130
Wild Duck Ck., Heathcote dist. 135
Wildwood, Bulla dist. 126
Willey's Quarry (Gisborne) 127
William, Mt., Lancefield 38, 39, 129, 135
William, Mt., Anticlinorium 123
Wombat, Korweinguboora 70, 87
Wombat Ck., N.E. Victoria 30, 37, 84, 135
Woodbrook Rd. 81, 120
Woodburn 61
Woodend 70, 81, 90 (Ba 74), 127, 129 (Ba 74), 134
Wood's Point 51, 110
Yalgogrin (N.S.W.) 89
Yandoit 129
Yankee Ck., Bendigo 138
Yapeen 76, 81, 157
Yarra Track, Warburton-Matlock dist. 128, 131, 139, 154
Yarra Improvement Works, South
 Yarra 67
Yass (N.S.W.) 45, 150
Yass-Boorowa Rd. (N.S.W.) 150
Yass-Gundaroo Rd. (N.S.W.) 150
Yeppoon (Q.) 118
Zeehan (T.) 48