PHYLOGENY AND BIOGEOGRAPHY OF THE GNATHIIDAE (CRUSTACEA: ISOPODA) WITH DESCRIPTIONS OF NEW GENERA AND SPECIES, MOST FROM SOUTH-EASTERN AUSTRALIA

BRIAN F. COHEN\(^1\) AND GARY C. B. POORE

Department of Crustacea, Museum of Victoria, 71 Victoria Crescent, Abbotsford, Victoria 3067, Australia
\(^1\) present address — Department of Zoology, University of Western Australia, Nedlands, WA 6009, Australia

Abstract

The classification of the Gnathiidae is reviewed for the first time since Monod (1926). States of 72 characters are discussed with reference to two outgroups of Flabellifera, forming the basis of a phylogenetic analysis. Ninety-five species are included in the analysis representing all nominal genera and subgenera and covering the perceived variation in the family. Results indicate that the Gnathiidae can be divided into two principal clades representing one (Thaumastognathia Monod) and nine genera (Gibbagnathia gen. nov., Paragnathia Omer-Cooper and Omer-Cooper, Euneognathia Stebbing, Bathognathia Camp, Monodgnathia gen. nov., Bathygognathia Dollfus, Caecognathia Dollfus, Gnathia Leach and Elaphognathia Monod).

The new classification differs from that of Monod (1926) in the description of two new genera (Monodgnathia and Gibbagnathia), the revival of another genus previously in synonymy (Caecognathia), the elevation of a subgenus to generic rank (Elaphognathia) and the loss of two genera and a subgenus in synonymy (Heerognathia, Akidognathia and Periognathia). The elevation of Elaphognathia to generic rank relies on the recognition of paraphyletic Gnathia. A key to the proposed genera of Gnathiidae is presented.

Twenty-five new species are described and figured from south-eastern Australia, three from deep water in the Tasman and Coral Seas, and one from New Zealand. Thaumastognathia is recorded for the first time since 1926. Bathygognathia, Monodgnathia, and Thaumastognathia are recorded for the first time from Australian waters. Keys to all 45 Australian species are offered with figures of the cephalosomes of the 17 previously described species to aid identification. Habitat and distributional data for all Australian species are presented.

The phylogenetic analysis of the family suggests the most significant evolutionary events in the radiation of the family took place in the cold waters of the southern hemisphere. Thaumastognathia, sister group of all other gnathiid species, is an endemic genus of four species from the Australian-New Zealand shelf. Gibbagnathia, the second clade, is an endemic, monotypic genus confined to Bass Strait, southern Australia. Paragnathia is enigmatic in being a single Afro-European species but Euneognathia is a single species from the Antarctic shelf. None of these four genera has radiated successfully. Bathognathia (1 species) is from the deep sea (4000 m) of the Caribbean. Monodgnathia (4 species) and Bathognathia (12 species) are both confined to the slope and deep sea. But radiation has been moderate and with the exception of the one species of Bathognathia none is found very deep, unlike many other families of isopods.

Two related clades have radiated strongly in more shallow and warmer waters: Caecognathia with 43 species distributed more towards the poles than Gnathia-Elaphognathia (89 species,) which is more cosmopolitan on temperate and tropical shelves and upper slopes. Small clades of species of Caecognathia are confined to Australia. Other species of the highly endemic southern Australian fauna seem to have arisen locally and independently.

Table of Contents

<table>
<thead>
<tr>
<th>Abstract</th>
<th>271</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>272</td>
</tr>
<tr>
<td>Materials</td>
<td>273</td>
</tr>
</tbody>
</table>
Introduction

The waters around Australia possess a rich crustacean fauna (Barnard, 1991; Poore et al., 1994), best documented in the south-eastern temperate region where extensive recent research has been completed. The isopod family Gnathidae is one of many contributing to this diversity but contains numerous undescribed species.

Gnathiid isopods are most unusual isopods, polymorphic in the extreme. Males are immediately recognizable by their large forwardly-directed mandibles and five pairs of walking legs. Females have more reduced jaws and a thorax swollen with ovary or eggs. The juveniles, or praniza larvae, pass through three instars in the only species studied (Wägele, 1987, 1988), each feeding on blood as ectoparasites of fishes. The praniza appears like a thinner female, also with five pairs of legs and sometimes with guts engorged with blood.

The morphology and classification of the Gnathiidae was placed on an excellent footing by Théodore Monod. Monod’s (1926) volume described in detail the anatomy and biology of the group and illustrated the 62 species then known. Camp (1988) listed a further 42 species described since Monod’s (1926) work. Eighteen species have been described since Camp’s work, two were overlooked by him (Table 1), and a further 29 are described here. This brings the total number of described species of Gnathiidae to 155. There has been no reappraisal of the relationship of the genera since that by Monod (1926).

Prior to this study 17 species of Gnathiidae were known from Australia, only six from the temperate waters of the south-east. Holdich and Harrison (1980) suggested that poor sampling effort, rather than low species diversity, was responsible for the low number of Australian species and that further sampling should uncover more species. This has proved true. This paper addresses the fauna of south-eastern Australia, from near Nowra, New South Wales (35°S, 150°E) around Tasmania (43°S) and across to Pearson Island (34°S, 134°E) west of the Spencer Gulf, South Australia. It describes four times as many species as were previously known from this region, recognises two new genera, is the first record of Thaumastognathia in over 65 years, the first records of Bathynathia and Thaumastognathia from Australia and the first records of gnathiids from Tasmanian waters. Four significant Australasian species from outside this region are also described, all from deep water. It is now apparent that Australia possesses a rich gnathiid fauna with approximately one-quarter of all the species so far described.

New species are described and figured. Most species previously described from Australia were well illustrated and described by Monod or later authors. Figures of their cephalosomes (Fig. 2) have been copied to aid in identification when using the keys.

As well as describing numerous new species from Australian coastal, shelf and slope environments we present a new phylogeny and classification of the family. This phylogeny is based on a cladistic analysis of 95 described species from world-wide localities. On the basis of this analysis two new genera are described, one is revived, a subgenus is elevated to generic rank, and other genera are lost in synonymy. A key to the ten
Table 1. Gnathiidae described since 1987 (including two overlooked by Camp, 1988). Species have been reallocated to genus according to the classification scheme adopted in this paper. Each species is followed by its type locality, depth of capture and size of male, when available. Species described prior to this date were listed by Monod (1926) and supplemented by Camp (1988). Coordinates of type localities are those listed by original authors; where size was not stated it was measured from figures.

Bythognathia yucatanensis Camp. 1988: Yucatan Channel, Caribbean Sea, 21°07.0'–13.0'N, 85°31.5'–32.0'W; 3700–3800 m; 20.8 mm.

Caeogathia amakusaensis (Nunomura, 1992): Use, Reihoku-cho, Kumamoto Pref., Japan; 30–35 m; 5.1 mm.

Caeogathia kikuchii (Nunomura, 1992): Shiraiwazaki, Reihoku-cho, Kumamoto Pref., Japan; 3.7 mm.

Caeogathia saikaiensis (Nunomura, 1992): off Tomoezaki, Japan; 3.1 mm.

Elaphognathia cornigera (Nunomura, 1992): Tujishima Islet, Itsuwa-chô, Kumamoto Pref., Japan; 2.4 mm.

Elaphognathia discolor (Nunomura, 1988): Isohara, Kita-imaragi shi, Ibaragi, Central Japan; 6.2 mm.

Elaphognathia wolfii (Müller, 1989a): Coral Reef near Tiwi, Mombasa, Kenya; 1.6 mm.

Gnathia calisi Müller, 1993b: La Trinité, Anse Rivièrè, Martinique, French Antilles; 0–2 m; 1.9 mm.

Gnathia cooki Müller, 1989c: Cooks Bay, Moorea, Society Is.; 1 m; 3.7 mm.

Gnathia firrigae Müller, 1991: La Réunion L’Ermitage-les-Bains; 0.5–1 m; 2.1 mm.

Gnathia galzini Müller, 1989c: Moorea, Society Is.; 0.5 m; 1.6 mm.

Gnathia gonalesi Müller, 1988: Punta de Betín, Sta Marta, Colombia; 15 m; about 1.5 mm.

Gnathia hirayamai Nunomura, 1992: Tomioka, Amakusa, Kumamoto Pref., Japan; 8.5 mm; 3.9 mm.

Gnathia incana Menzies and George, 1972: Peru-Chile Trench, 11°50'S, 77°58'W; 935–907 m; 3.6 mm.

Gnathia lacunacapitalis Menzies and George, 1972: Peru-Chile Trench, 07°59'S, 80°37'W; 991–1015 m; 4.5 mm.

Gnathia lignophila Müller, 1993a: Pulau Babi Besar, Tioman Archipelago, Malaysia; lower-intertidal; 1.9–2.9 mm.

Gnathia magdaleniensis Müller, 1988: Bahía de Nenguangue, Colombia; 18 m; about 2.7 mm.

Gnathia malaysiensis Müller, 1993a: Pulau Babi Besar, Tioman Archipelago, Malaysia; 1–2 m; 2.3 mm.

Gnathia nasuta Nunomura, 1992: off Tomoezaki, Kumamoto Pref., Japan; 8.5 m; 3.3 mm.

Gnathia nicembola Müller, 1989b: Entrance channel to Suva Harbour, Fiji; 76–84 m; 2.6 mm.

Gnathia samariensis Müller, 1988: Isla de Morro Grande, Colombia; 30 m; about 1.95 mm.

Gnathia vellosa Müller, 1988: Isla de Morro Grande, Colombia; 25–30 m; about 1.2 mm

(excluding pleon).

world genera now recognised and a checklist of species in the new classification are presented. Updated keys to the species of Australia are offered.

Materials

Much of the material on which this study is based has come from large benthic surveys of the bays, shelf and slope of southern and eastern Australia:

- Crib Point Benthic Survey, 1965–1972 (CPBS) carried out in Western Port, Victoria, by the Marine Studies Group, Ministry for Conservation, Melbourne;
- Bass Strait Survey, 1979–1985 (BSS) carried out by the Museum of Victoria, Melbourne (see Wilson and Poore, 1987 for station locations and methods);
- south-eastern Australian slope study, 1986, 1988 carried out by the Museum of Victoria, Melbourne (see Poore et al., 1994, for station locations, methods and a discussion of the diversity of Isopoda);
- the 1986 *Cidaris* cruise in the western Coral
mandibular seta
incisor
armed carina
internal lobe
lamina dentata
superior frontolateral process
inferior frontolateral process
mediofrontal process
paraocular ornamentation
dorsal sulcus
posterior median tubercle
P1 not reaching lateral margins
anterolateral lobe (P4)
median groove (P4)
areae laterales (P5)
dorsal sulcus as a thin groove (P5)
lobi laterales (P6)
pleonite 1
epimera prominent
dentate blade
pseudoblade
smooth blade
dorsal lobe
basal neck
erisma
accessory supraocular lobe
supraocular lobe
external scissura
frontal border
P1 divided into 3 regions
areae laterales (P5)
dorsal sulcus
lobi laterales (P6)
lobii (P6)

Figure 1. Stylised male gnathiid (dorsal view) showing main anatomical features.

Sea, carried out by James Cook University of North Queensland; and other material from the collections of the Australian Museum, Sydney and the Museum of Victoria, Melbourne.

All type material is lodged in the collections of the Museum of Victoria, Melbourne (NMV), Australian Museum, Sydney (AM), Queensland Museum, Brisbane (QM) and New Zealand Oceanographic Institute, Wellington (NZOI).

Only males were described because of the difficulty of identifying praniza stages and females. In the species-rich environment of south-eastern Australia, dredge samples with more than one species of gnathiid were common, therefore association of females and pranizas with males was not considered a sufficient criterion for identification. No obvious characters were found that enabled females or pranizas to be accurately identified to species and this problem
was not explored. Identification of females and pranizas to the species level would be a major project and was not attempted here.

We follow the anatomical terminology used by Monod (1926) and Holdich and Harrison (1980) except for numbering of pereonites and pereopods (Fig. 1). The first body segment posterior to the cephalon, pereonite 1 (correctly thoracomerc 2, not pereonite 2 as in Monod’s and Holdich and Harrison’s works), is fused to the cephalon forming a cephalosome. In some species pereonite 1 may be dorsally indistinguishable from the cephalon. The pylpod (pereopod 1) attaches to pereonite 1. Pereonites 2–6 follow posteriorly with pereonite 2 possessing the most anterior of the five pairs of walking legs. The pereopods are labelled according to the pereonite to which they are attached (pereopods 2–6). Pereonite 7, when distinguishable, is very small and functionally forms part of the outline of the pleon.

The scale bar is 1 mm and refers only to drawings of whole animals in dorsal view. Figure labels are as follows: A1, A2, antenna 1 and 2; PY, pylpod (pereopod 1); MP, maxillipeds; P2–P6, pereopods 2–6 (walking legs 1 to 5); U, uropods; l, r, left and right. All illustrations are of the male holotype unless otherwise stated. Figure 1 is of a stylised male gnathiid and is labelled to show parts of the animal and its ornamentation.

Monod’s (1926) review of the Gnathiidae was extremely detailed and included over 300 references. His synonyms were detailed, therefore, they are not repeated here in full. Hesse (1864) highlighted the similarity of gnathids to ants (Formicidae) with the specific name Anceuformica. The specific epithets of new species here described are genera of Australasian ants (Taylor, 1987) chosen only for their euphony, not to reflect any specific feature of either the isopod or the ant. All are nouns in apposition.

Morphological characters were coded into the taxonomic database program DELTA (Dallwitz and Paine, 1986) for all Australian species. Descriptions were generated from this program but were heavily edited. The database is available on request by DELTA users from the Department of Crustacea.

Phylogenetic methods

Hennigian phylogenetic (eladistic) methods were used to generate cladograms as hypotheses of the relationship between species of the family Gnathiidae. As many species as were practical, rather than the nominal genera, were chosen for the analysis because of doubt about the monophyly of some genera. The information on character states comes mostly from illustrations and descriptions in the literature and was supplemented from specimens in the collections of the Museum of Victoria. Published details on many species were inadequate for this purpose. These species were omitted but it is felt that the 95 species described in sufficient detail covered the range of form seen in the family. Specimens of Enneognathia gigas (Beddard, 1886), Paragnathia formica (Hesse, 1864) and Gnathia maxillaris (Montagu, 1804) were lent or donated.

The programs PAUP version 3.1.1 and HENNIG86 version 1.5 were used to establish relationships between species and to derive a practical classification which reflected these relationships. The same data set with the same assumptions was run under PAUP with the heuristic search option (general and branch-and-bound) and under HENNIG using mhx and hbx routines. Outgroups were chosen from the Isopoda Flabellifera in order to polarise characters. The following sections describe the outgroups, taxa chosen and character transformations.

Outgroups

Brucea and Wilson’s (1991) analysis of the relationships of the Isopoda placed the Gnathiidae among the “long-tailed” taxa, part of the non-monophyletic Flabellifera. They concluded that the family no longer deserves the subordinal status traditionally used. Outgroups, therefore, were sought from among the Flabellifera. Wägele and Brandt (1988) suggested that the protognathiid, Protognathia bathypelagica (Sclultz, 1977) is a “missing link” or intermediate stage between the Cirolanidae and the Gnathiidae, and that these two families are closely related. Brucea and Wilson (1991) argued that Protognathia is not closely related to the Gnathiidae but rather Protognathiidae is part of the Cirolanidae-Anurapidae-eymothoid line. They argued that the Cirolanidae is more closely related to the Gnathiidae than Protognathiidae is to Gnathiidae. Both the Cirolanidae and the Protognathiidae were selected as outgroups. Eurydice aenicta Bruce, 1981 was chosen to represent the Cirolanidae for many characters. Protognathia bathypelagica is known only from immature specimens; states describing the sexual characters of adult males are coded as...
unknown (?) in Table 3). For both outgroups, a number of the mandibular characters were coded as inapplicable due to the difficulty in drawing homologies between the highly modified mandibles of the Gnathiidae and the mandibles of other Isopoda. Inapplicable characters were coded as states separate from those found in the Gnathiidae (Table 2). The praniza stage of gnathiid ontogeny was also considered when there was difficulty assessing the plesiomorphic condition of some characters.

Taxa chosen

It proved impossible to include every described species of Gnathiidae in the analysis. Many species were excluded because they were not described in sufficient detail to enable complete coding of all character states. Ninety-five species from all round the world were included (Table 3) representing all nominal genera and subgenera.

Four species represented the monotypic genera Euneognathia (E. gigas), Paragnathia (P. formica), Heterognathia (H. calva) and Bythognathia (B. yucatanensis). All species of Thaumasognathia were included, three of which are newly described. Of the remaining genera, Akidognathia, Bathynathia and Gnathia, the type species and all species described in sufficient detail were included in the analysis. Thus, A. oedipus, A. cristatipes, B. affinis, B. magnifica, B. porca and six similar new species provided data. Akidognathia and Bathynathia seemed a priori to be closely allied and the 11 species included covered the variation within these two genera and the supposed differences between them, principally in the form of the pereopods, mandibles and frontal border.

The remaining species are or could be members of Gnathia and its three subgenera, Gnathia s.s., Perignathia and Elaphognathia as presently defined. The monotypic subgenus Perignathia was represented by P. triospithiona although its type species is in doubt (see below). Gnathia s.s. and Elaphognathia were represented by numerous species. Caecognathia stygia, type species of a genus considered by Monod (1926) a junior synonym of Gnathia was also included.

Character discussion

The 72 characters used in the phylogenetic analysis are discussed in turn below. All are potential synapomorphic characters (i.e., none is apomorphic for a single species). The character states are given in Table 2 and the data matrix in Table 3.

Eyes. Almost all Gnathiidae have sessile, lateral eyes during all stages of development; this condition is plesiomorphic. Eyes have been lost.
Table 2. Character transformations used in the phylogenetic analysis of 95 species of Gnathiidae. The plesiomorphic state is listed first and separated by ; from the apomorphic state or states. In the data matrix plesiomorphic states are indicated by 0 and apomorphic states by 1 or more. Characters with consistency and retention indices of 1 are marked with *.

Eyes
1. Eyes present; absent.

Cephalon
2. Cephalon broader than long; as long or longer than broad.
3. Dorsal sulcus absent; present.
4. Paraocular ornamentation absent; present.
5. Granules/tubercles absent; present on cephalon; present on cephalon and pereon.
6. Cephalon lacking posterior, laterally deflected grooves; grooves present.
7.* Cephalon lacking anterior median furrow; furrow present.
8. Posterior cephalon not divided by shallow grooves; posterior cephalon divided by grooves (often marked with chromatophores).

Frontal border
9. Frontal border rounded/produced; transverse.
10. Frontal border not greatly produced; greatly produced.
11.* Frontal border not excavated; excavated.
12. Frontal border without frontal processes; with frontal processes.
13.* Frontal border not clearly delineated; clearly delineated (chalky white appearance).
14.* Buccal cavity wall not visible dorsally; visible beyond rostrum.
15. Entire frontal margin including region lateral to the base of mandibles not produced; entire margin produced.
16. Frontal border lacking small median indentation; indentation present (not to be confused with excavation found in Elaphlognathia).
17. Setae on frontal border absent; present.
18. Mediofrontal process absent; single process; multiple processes.
19. Mediofrontal process not inferior; inferior.
20. Superior frontolateral process absent; present.
21. Inferior frontolateral process absent; present.

Mandible
22. Armed carina inapplicable; absent; present.
23. Incisura inapplicable; absent; present; pronounced.
24. Internal lobe inapplicable; absent; present.
25. Mandible clearly less than 5 times as long as wide; 5 times as long or longer.
26. Apical cusps absent; present.
27. Blade dentate/crenulate; not dentate; absent/highly reduced.
28. Pseudoblade absent; present.
29. Setae inapplicable; absent; present.

Antennae
30. Antenna 1 shorter than or equal to antenna 2; antenna 1 longer than antenna 2.
31. Antenna 1 flagellum with 7 or more articles; 6; 5; 4; 3; 2 or fewer articles.
32. Antenna 2 flagellum with 8 or more articles; 7; 6; 5; 4; 3 or fewer articles.
33.* Antenna 1 peduncle length greater than 4 times width; less than 4 time width.
34.* Antenna relatively straight; curved under mandibles.

Pereon
35. Pereon devoid of or with only few setae; setae present anteriorly; setae present all over.
36. Pereon wide (length ≤1.85 width); medium; narrow (≥2.5).
37. Pereon pear-shaped (clearly widest at pereonite 5); not pear-shaped.
38. Pereon wider than cephalon; narrower than or as wide as cephalon.
39. Pereonite 1 clearly extending to margins of pereon; surrounded completely by cephalon and pereonite 2; not visible.
40. Anterior constriction of pereonite 4 absent; present.
41. Pereonite 4 lacking mid-dorsal spine; spine present.
42. Pereonite 6 without lobii; lobii present.
43. Posterior margin of pereonite 6 not deeply coneave; posterior margin deeply coneave.
in the adults of only a few species, nearly all of which occur in the deep sea (character 1).

Cephalon. The dorsal surface of the plesiomorphic cephalon is smooth, featureless and broader than long, similar to the cephalon of the cirolanid, *E. acuticauda*. While the Cirolanidae are mostly free-roaming predators or scavengers (Bruce, 1986), adult Gnathiidae are cryptic, often inhabiting substrate that offers protection. Some species may construct burrows. From within these hiding places the gnathiid’s mandibles can protrude to deal with potential trouble while the remainder of the animal remains protected (Seed, 1979). Compared to other Isopoda, the mandibles and cephalon of many gnathiids are strengthened. Apomorphically states of the cephalon include sculpture and ornaments which may increase the strength of the cephalon; these include furrows and depressions and raised bumps and tubercles.

A peculiar feature found mid-dorsally on the anterior cephalon or rostrum of a few gnathiids is a thin translucent region of variable shape and size, located above the buccal cavity. The function of this structure and its evolutionary importance are unknown.
Table 3. Species-character matrix of species of Gnathidae (95 species by 72 characters). The first two taxa are outgroups. Unknown character states are shown by "-"

| Species | Character 1 | Character 2 | Character 3 | Character 4 | Character 5 | Character 6 | Character 7 | Character 8 | Character 9 | Character 10 | Character 11 | Character 12 | Character 13 | Character 14 | Character 15 | Character 16 | Character 17 | Character 18 | Character 19 | Character 20 | Character 21 | Character 22 | Character 23 | Character 24 | Character 25 | Character 26 | Character 27 | Character 28 | Character 29 | Character 30 | Character 31 | Character 32 | Character 33 | Character 34 | Character 35 | Character 36 | Character 37 | Character 38 | Character 39 | Character 40 | Character 41 | Character 42 | Character 43 | Character 44 | Character 45 | Character 46 | Character 47 | Character 48 | Character 49 | Character 50 | Character 51 | Character 52 | Character 53 | Character 54 | Character 55 | Character 56 | Character 57 | Character 58 | Character 59 | Character 60 | Character 61 | Character 62 | Character 63 | Character 64 | Character 65 | Character 66 | Character 67 | Character 68 | Character 69 | Character 70 | Character 71 | Character 72 |
Characters 2–8 summarise character changes in the cephalon.

Frontal border. The frontal borders of the Gnathiidae are variable and often complex. Monod (1926) introduced terms to describe many of the unique structures found there (see fig. 1). The pleisomorphic frontal border is simple, smoothly rounded, only slightly produced and devoid of setae, similar to that of most cirolanids. The apomorphic frontal border may have one or more frontal processes originating from different vertical levels and may be greatly produced or deeply excavated.

Gnathiids belonging to the Section Transversae (see Monod. 1926) possess a relatively linear frontal border which is punctuated with one or more frontal processes. All species of Bathynatha lack frontal processes but possess a frontal border produced into a rostrum. The rostrum can be as long as the rest of the cephalon beyond which the buccal cavity wall may be visible. The frontal border of Elaphognathia has been deeply excavated. The frontal border region of some species of Monodgnathia is clearly delineated from the rest of the cephalon and has a chalky-white appearance in the two newly described Australian species.

Mandibles. Pronounced, anteriorly protruding mandibles characterise the adult male Gnathiidae. These mandibles are believed to be for display or defence and not involved in feeding (Brusca and Iverson, 1985). Male Gnathia have been observed capturing females with its mandibles to gather a harem in its burrow. Homologies between the mandibles of gnathiids and other isopods are difficult to draw. The molar, spine row and lacinia mobilis are reduced if present. The mandibular palp may be represented by the mandibular seta in gnathiids but this is not assumed.

For the purposes of this analysis, the pleiomorphic state of the mandibles in gnathiids is of a relatively straight and symmetrical mandible with a single dentate blade, homologous to the lacinia mobilis of cirolanids. Monod (1926) introduced new terms to describe what are believed to be features unique to the gnathiid mandible. No homologies are drawn between the internal lobe and molar process of the mandible of other Isopoda and the armed carina and incisura of gnathiids and the incisor process of other isopods. These characters have been coded as inapplicable for the outgroups. Other apomorphic states include the dramatic lengthening
of the mandibles and addition of apical cusps as found in *Elaphognathia*.

Characters 22–29 summarise character changes in the mandibles.

Antennae. The antennae are similar to the antennae of other Isopoda: antenna 1 with a 3-articled peduncle and a short first flagellum article; antenna 2 with a 5-articled peduncle. The first article of antenna 2 is very short and not figured in gnathiid illustrations. Reduction in the number of antennal flagellum articles, reduction in width of the peduncle of antenna 1, and reduction in the length of antenna 2 (relative to antenna 1) are all apomorphic states.

Characters 30–34 refer to the antennae.

Pereon. The Gnathidae differ considerably from the body plan of Cirolanidae. Many gnathiids have a more elongate and flexible habitus; are proportionally narrower and longer, and are better articulated between pereonites 3 and 4 (characters 36–38 and 40).

Cephalisation is characteristic of the Gnathidae. pereonite 1 is partially fused with the cephalon in all species. Further cephalisation has occurred in a few species; pereonite 1 has become immersed or completely fused with the cephalon (character 39). Pereonite 7 is reduced and appears to form part of the pleon. In a few species, pereonite 7 is not visible dorsally. Various ornamental changes of unknown function have also occurred and are summarised in characters 41–43 and 45. These changes may serve to strengthen the pereon which is relatively soft, especially in the pranizas and females.

Pereonites 5 and 6 of pranizas have been completely fused together into an elastic stomach region (Wägele, 1987). Pranizas are able to engorge themselves on their fish host (Paperna and Por, 1977; Wägele, 1987) and this elastic stomach region expands and contracts with the meal. A few adult gnathiids retain this apomorphy (character 44).

Pleon, pleotelson and uropods. The telson is longer and more slender than the telson of Cirolanidae (Wägele, 1987). This may aid in locomotion, particularly for the praniza which must swim to and from suitable fish hosts. The pleotelson of most gnathiids is triangular with a marked apex (though the truncated pleotelson of *C. agwillisi* (Seed) is a notable exception). The uropodal rami of Cirolanidae are short, shorter than or about as long as the pleotelson. Elongation of the rami relative to the pleotelson and of the exopod relative to the endopod are considered apomorphies.

Characters 47–49 summarise these changes.

Maxilliped. The plcsiomorphic maxilliped is 5-articled with a palp approximately two to three times as long as broad. The maxilliped is similar in most gnathiids; apomorphic changes include the loss of some or all of the coupling hooks found on the internal margin of the endite and the lengthening of the palp to approximately five times its width.

The exceptions are the genera *Thaumastognathia* and *Giphognathia* whose maxillipeds are greatly reduced to only one or two articles or lost altogether (characters 50–53).

Pylpod. The pylpod is the highly modified pereopod 1 and defines the Gnathidae. The pylpod is directed anteriorly and forms the most ventral mouthpart. The function of the pylpod has not been fully investigated but it has been suggested that in most genera it acts as a operculate cover for the other mouthparts and/or as a large surface area across which gas exchange takes place (Seed, 1979). An analogue is seen in the third maxilliped of decapods.

The plcsiomorphic state of the pylpod, a simple pereopod, is seen in the "gnathopode" of the larval *Paragnathia formica* (Monod, 1926: fig. 34). In adult males of all genera except *Bythognathia* the pylpod is simplified and lacks the terminal ugis. The apomorphic states involve a reduction in the number of articles from more than five to as few as three or two, a change from a cylindrical shape to an operculate shape and the loss of setae. The fringe of plumose setae seen on the external margin of article 1 on the pylpod of many species has been secondarily derived and is not directly homologous with any setae on a typical pereopod. This condition is apomorphic.

Characters 54–63 are changes in the pylpod.

Pereopods. Adult gnathiids have only five pairs of functional walking legs: thoracopods 3–7 or pereopods 2–6 of other isopods. Pereopod 1 has been modified into the pylpod and pereopod 7 is absent, a neotenous state shown in all isopod manca (first instar). The five remaining pereopods (2–6 in our numbering) primitively are very similar to each other and to the perepods of other isopods except for a dense covering of plumose setae. Pranizas use these plumose setae to swim towards a suitable fish host (Wägele and Brandt, 1988).

The proportions of the basis, isethium and merus on pereopods 4–6 are diagnostic of species of *Bathygnathia* and *Monodgnathia*. The
merus of pereopods 4–6 in some species of Bathynothhia is medially expanded along the anteroposterior axis. The ischium of pereopod 4 of species of both Monodgnathia and Bathynathia may be distally expanded, occasionally as a circular cusp which appears to function as a large foot or support. The distal articles below the ischium cusp can be directed along the same plain as the ventral face of the cusp further increasing the surface area available for support; these articles no longer appear to be part of a functional walking leg (see Monodgnathia pro-
era). The ischium of pereopod 5 may also be expanded. The basis of pereopod 4 of some species previously assigned to Akidognathia has developed a pronounced quadratic lobe on the lateral face (see figs 74 and 76). The function of this structure has not been investigated though it appears to be capable of locking pereopod 4 against the pereon.

Characters 64–70 explain changes in pereopods.

Pleopods and penes. The pleopods are useful taxonomic characters for the study of many crustacean taxa but do not vary greatly among species of Gnathiidae. The pleomorphomic pleo-
pods have setose margins (e.g., Cirolanidae) and the appendix masculina is as long or longer than the endopod of pleopod 2. Loss of setae from the pleopodal rami (character 71) and reduction (character 72, state 1) or loss (state 2) of the appendix masculina are apomorphic states. The penes of most gnathiids are small; only in a few species are they greatly enlarged.

Results

Cladogram

While processing earlier versions of the data matrix using the programs PAUP and HENNIG it was not uncommon for one program to find shorter trees than the other. Neither program consistently found the shorter trees, therefore, when dealing with large data sets we strongly rec-

ommend that more than one tree-calculating program is used.

For the final data matrix (Table 2) both HEN-
NIG, using the mh* and hh* search options, and PAUP, using the heuristic search option, found equally parsimonious trees of the same length – 594 steps (consistency index = 0.19, retention index = 0.63).

Almost 1000 equally parsimonious trees were saved by HENNIG and 3000 trees by PAUP but given the limited memory available on the computers used for the analysis, the number of trees saved represent only a fraction of the true num-
ber of equally parsimonious trees for this data set. Because of the large number of equally par-
simonious trees found it was necessary to calcu-
late consensus trees with their resulting loss of information and resolution. Nelson strict-consen-
sus and 50% majority-rule trees were gen-

erated. These differed from each other only at the subgeneric level, the major clades which could be used to define genera were identical in both. Numerous versions and subsets of the data matrix supported the major clades, therefore, we are confident of the monophyly of these major clades. The strict consensus tree is shown in fig. 3. Two major clades are evident. The smaller clade is comprised solely of the genus Thaunas-

tognathia; the other clade contains the remain-
ing nine genera.

Ten characters (14%) retained ci and ri equal to 1 and are marked with * in Table 2. A further 15 characters (21%) had ci equal to or greater than 0.5.

The transformation series, apomorphic changes at all nodes of the cladogram, were investigated using the apolix option in PAUP and the program CLADOS. Ambivalent characters were revealed with the vs h option in HEN-
NIG86. Thirty-two characters were ambivalent at one or more nodes; 18 occurred at nodes that separated the major clades. The implication of this is that these characters could not be used in defining genera unless post hoc decisions on their value were made.

The successive weighting option (PAUP reweight) resulted in longer equally parsimoni-
ous trees (after weights had been reconverted to unity). These trees resolved some clades, prin-
cipally within the Caeognathia and Gnathia clades, suggesting that a more robust analysis may reveal that these two genera can be further divided and refined. Because of their greater length, trees generated by the successive weight option were not considered further.

Character changes defining clades and genera

Character changes defining the major clades are discussed below. The major clades for which taxonomic status exists or is proposed are out-
lined and discussed in further detail. No con-
clusion is drawn about the relationship of the Gnathiidae to the outgroups.

The family is divided into two clades, 1 and 16, interpreted as one and nine genera respectively.

Thaunastognathia (clade 1) shares the follow-
ing apomorphies that are never reversed:
PHYLOGENY AND BIOGEOGRAPHY OF GNATHIIDAE

mouthparts small; maxilliped of fewer than 5 articles; antenna curved under mandibles; antenna 1 longer than antenna 2; antenna 2 peduncle stout (less than 4 times width) and flagellum of 3 articles or less; pereonite 7 not visible dorsally and pleopods without setae. The following plesiomorphies also unite Thaumastognathia: pylopod pediform, not operculate and pereon widest at pereonite 5.

Clade 15 (Gibbagnathia, Paragnathia, Eunecognathia, Bythognathia, Monodgnathia, Bathognathia, Caecognathia, Gnathia and Elaphognathia) share the following characters that are sometimes reversed: mouthparts not reduced; pylopod not pediform, with setae on ventral surface; maxilliped of 5 articles (sometimes with coupling hooks); antenna 1 peduncle length greater than four times width and dorsal sulcus present. Gibbagnathia (clade 2) is a monotypic genus defined by numerous autapomorphies not included in this analysis (see Methods). In this analysis Gibbagnathia is characterised by the following apomorphies convergent in other taxa: mouthparts small; pylopod pediform; maxilliped of fewer than 5 articles; frontal border with processes; superior frontolateral process present; mandibular blade reduced or absent and cephalon and pereon covered with numerous granules and setae.

Clade 16 (Gibbagnathia, Paragnathia, Eunecognathia, Bythognathia, Monodgnathia, Bathognathia, Caecognathia, Gnathia and Elaphognathia) share the following characters that are sometimes reversed: antenna 1 flagellum of four or more articles; pereon even-sided; pereonite 4 possessing an anterior constriction; pereonite 7 visible and antenna 2 longer than or subequal to antenna 1.

Figure 3. Strict consensus tree calculated from over 3000 equally parsimonious trees (The tree does not indicate branch length but is organised for clarity only).
Paragnathia (clade 3) is also a monotypic genus defined by numerous autapomorphies not included in this analysis (see Monod, 1926). In this analysis Paragnathia is characterised by the following which are convergent in other taxa: pylopod 6-articled, operculate (articles 1, 3 and 4 enlarged); frontal border without processes; pleopods without setae; pereopods covered in plumose setae and uropodal rami clearly extending beyond the apex of the pleotelson.

Clade 14 unites seven genera with the following synapomorphies that are sometimes reversed: pylopod of 5 or fewer articles (except Bythognathia) and external margin of pylopod with at least a few setae.

Euneognalhia (clade 4) is a monotypic genus defined in this analysis by the following apomorphies convergent in other taxa: pylopod 5-articled (not operculate), with a dense margin of plumose setae; frontal border transverse, with processes; mediofrontal process with multiple projections; inferior lateral process present; mandibles with a pseudoblade and an internal lobe; cephalon with paraocular ornamentation; and posterior border of pereonite 6 deeply concave with lobuili. For a complete description, including autapomorphies not used in this analysis see Monod (1926).

Clade 13 unites the seven remaining genera which possess an operculate pylopod (except Bythognathia).

Clade 11 links three genera Bythognathia, Monodognathia and Bathynathia who share three apomorphies, never reversed: produced frontal border; absence of a dentate mandibular blade and presence of four or more coupling hooks on the maxillipedal endite. Other character changes are reversed in some species or genera. These include: absence of eyes (present in two species of Bathynathia) and appendix masculina one-half to three-quarters length of the pleopodal endopod; Bythognathia (clade 5), the least derived genus, is monotypic and defined by numerous autapomorphies (Camp, 1988 for complete description). Bythognathia is defined in this analysis by the following apomorphies convergent in other taxa: antenna 1 flagellum 7-articled; uropodal rami clearly extending beyond the apex of pleotelson; pylopod 6-articled, pediform, external margin with dense cover of plumose setae; pereonite 1 extending to lateral margins of pereon; pereopods with dense cover of plumose setae and pereopods 3–6 with laterally expanded merus.

Monodognathia and Bathynathia form a strong and consistent group (clade 10) based primarily on the structure of the pylopod. These two genera share synapomorphies: pylopod 5-articled, operculate; pylopod article 2 greatly enlarged with spine(s) present on article 3. Monodognathia (clade 6) is further defined by synapomorphies: mandibular blade present; peropod 4 basis with a lateral quadratic lobe, ischium distally expanded into a circular cusp and frontal border as a distinct (chalky white in Australian species) region. Bathynathia (clade 7) is defined by one synapomorphy and two apomorphies convergent in other taxa: buccal cavity wall protruding beyond rostrum, frontal border greatly produced and the presence of setae on the frontal border. Other apomorphies reversed in some species include: mandibles long (length about 5 times width); peropods 3–6 with laterally expanded merus and the ischium of peropod 4 expanded distally (though not necessarily as a circular cusp).

Clade 12, comprising Caecognathia and Gnathia, is defined by three apomorphies, all of which involve the pylopod: pylopod 2- or 3-articled, article 1 enlarged and article 3 reduced. Other apomorphic character changes that are reversed in some species include: pylopod with dense margin of plumose setae and article 2 of pylopod circular. Caecognathia (clade 8) is defined by three apomorphies reversed in some species: a rounded frontal border; a mandibular blade which is not dentate or erenate (reversed in P. crenulatifrons) and pleopods without setae.

Clade 9 is characterised by two non-reversed apomorphies of the frontal border: frontal border transverse and with processes. Two other apomorphies are reversed in some species: the presence of a superior frontolateral process and a mandibular incisor. This clade contains 56 species previously allocated to Gnathia and Elaphognathia.

Our analysis did not result in further dichotomies between major clades. The species G. triospithiona Boone, which Monod (1926) placed in the subgenus under incorrectly called Perignathia, was not significantly different from other species of Gnathia. Nine species belonging to the subgenus Elaphognathia did cluster in a monophyletic clade sharing several synapomorphies: frontal border excavated, mandibles possessing an internal lobe and lacking a dentate blade. Other character changes are reversed in some species: mediofrontal process and mandibular seta absent. Recognition of this taxon relies on recognition of a paraphyletic nominal taxon Gnathia. Elaphognathia, with its deeply
excavated frontal border, is immediately distinguishable from *Gnathia*, therefore, both *Elaphognathia* and *Gnathia* are given generic status.

A new classification of Gnathiidae

Monod (1926) in his major revision of the Gnathiidae recognised six genera: *Akidognathia*, Thaumastognathia, Paragnathia, Euneognathia, Bathygnathia and *Gnathia*. The genus *Gnathia* was further divided into three subgenera; *Gnathia*, Elaphognathia and “Perignathia”. Since then, Bythognathia was erected by Camp (1988). Of these genera and subgenera *Euneognathia*, Bythognathia, Paragnathia and *Thaumastognathia* remain as originally defined but a new classification is needed for the others.

The strict-consensus tree, the most conservative consensus tree, gives a good deal of confidence in the robustness of the clades and is used as an hypothesis on which to base a new classification as follows:

Family Gnathiidae Leach, 1814

Bathygnathia Dollfus, 1901

Bythognathia Camp, 1988

Caecognathia Dollfus, 1901

Elaphognathia Monod, 1926

Euneognathia Stebbing, 1893

Gibbagnathia gen. nov.

Gnathia Leach, 1814

Monodgnathia gen. nov.

Paragnathia Omer-Cooper and Omer-Cooper, 1916

Thaumastognathia Monod, 1926

The significant taxonomic changes proposed by this classification are:

1. Synonymy of the genus *Akidognathia* Stebbing, 1913 with *Bathygnathia* as a result of its type species being placed in the clade containing all species of *Bathygnathia*.
2. Erection of a new genus *Monodgnathia* to house non-type members of the former genus *Akidognathia*.
3. Erection of a new genus (presently monotypic) *Gibbagnathia*.
4. Resurrection of the genus *Caecognathia* based largely on the Section Productae of *Gnathia* (Monod, 1926).
5. Restriction and redefinition of the genus *Gnathia* as a paraphyletic taxon.
6. Elevation of the subgenus *Elaphognathia* to generic status on the basis of monophyly.
7. Synonymy of the subgenus *Perignathia* Monod, 1926 with *Caecognathia*.

Table 4 lists all currently known species in the new classification.

Biogeography

The family Gnathiidae is widespread, found from the Arctic through to the Antarctic and the intertidal, shelf and upper slopes of the major oceans. The South Atlantic, Indian Ocean and the Eastern Pacific Ocean have yielded few species of Gnathiidae compared to the seas around Europe, the Caribbean and the Western Pacific. Whether this reflects the amount of taxonomic work undertaken in the various regions or a natural pattern is unclear, though there is no *a priori* reason to expect the Pacific and Indian Oceans to possess a less diverse gnathiid fauna.

The cladogram contains information about the evolution of the family. The most significant evolutionary events in the radiation of the Gnathiidae took place in the cold and cool waters of the southern hemisphere. *Thaumastognathia*, four species on the shelf of Australia-New Zealand, is the sister group of all other gnathiids. Its presence on coasts on both sides of the Tasman Sea indicates that the genus is at least 80 million years old, the time usually given for the separation of these two land masses. The monotypic *Gibbagnathia*, the second clade in the cladogram is also a southern Australian shelf species. *Paragnathia* is enigmatic in being a single Afro-European species but *Euneognathia* is a single species from the Antarctic shelf.

None of these four genera has radiated successfully. But the next clade of three genera has begun to radiate in cold water. *Bythognathia* (one species) is from the deep sea (4000 m) of the Caribbean. *Monodgnathia* (four species) and *Bathognathia* (12 species) are both confined to the slope and deep sea (245–2698 m). *Monodgnathia* has a very disjointed distribution between the Western Pacific and North Atlantic suggesting that further species await discovery. But radiation has been moderate and with the exception of the one species of *Bythognathia* none is found very deep, unlike many other families of isopods.

Two related clades have radiated strongly in more shallow and warmer waters: *Caecognathia* with 43 species distributed more towards the poles than *Gnathia-Elaphognathia* (89 species) which is more cosmopolitan on temperate and tropical shelves and upper slopes. *Elaphognathia*...
Table 4. Species of Gnathiidae assigned to genera according to the new classification proposed here. See Monod (1926) for full synonymies of species published by him or prior to this date. Later authorities are included in the References.

Bathygnathia Dollfus, 1901
- B. adlerziya sp. nov.
- B. affinis Birstein, 1963
- B. bathybia (Beddard, 1886)
- B. cardiocondyla sp. nov.
- B. curvirostris Richardson, 1909
- B. magnifica Moreira, 1977
- B. monodi Cals, 1974
- B. oedipus (Stebbing, 1913)
- B. porca Kelsey, 1980
- B. segonzaci (Cals, 1982)
- B. tapinina sp. nov.
- B. vollenhovia sp. nov.

Bythognathia Camp, 1988
- B. yucatanensis Camp, 1988

Caecognathia Dollfus, 1901
- C. abyssorum (Sars, 1872)
- C. agwillisi (Seed, 1979)
- C. akaroensis (Monod, 1926)
- C. albeceenoides (Menzies, 1962a)
- C. anaktasaeensis (Nunomura, 1992)
- C. antarctica (Studer, 1883)
- C. bicolor (Hansen, 1916)
- C. brachyponera sp. nov.
- C. caeca (Richardson, 1911)
- C. calva (Vanhöffen, 1914)
- C. consoberina (Monod, 1926)
- C. cordaliophila (Monod, 1926)
- C. crenulatifrons (Monod, 1926)
- C. diacanuma sp. nov.
- C. dolichoderus sp. nov.
- C. elongata (Kröyer, 1847)
- C. floridensis (Menzies and Kruczynski, 1983)
- C. galzini Müller, 1989c
- C. guamptogenys sp. nov.
- C. hirsuta (Sars, 1877)
- C. hodgsoni (VanHöffen, 1914)
- C. huberia sp. nov.
- C. kikuchii (Nunomura, 1992)
- C. leptantilla sp. nov.
- C. nasuta (Nunomura, 1992)
- C. nppelinesis (Monod, 1926)
- C. pacifera (Monod, 1926)
- C. paratrechta sp. nov.
- C. piloxipes (Monod, 1926)
- C. polaris (Hodgson, 1902)
- C. polythrax (Monod, 1926)
- C. pustulosa (Hale, 1924)
- C. regalis (Monod, 1926)
- C. robusta (Sars, 1879)
- C. saikaiensis (Nunomura, 1992)
- C. sanctaexcursis (Schultz, 1966)
- C. schistifrons (Stebbing, 1913)
- C. serrata (Richardson, 1909)
- C. stygia (Sars, 1877)
- C. trachymesopus sp. nov.
- C. vanhoeffeni (Menzies, 1962c)
- C. venae (Menzies, 1962a)
- C. wagneri (Monod, 1925a)

Elaphognathia Monod, 1926
- E. antennae (Cals, 1978)
- E. baecescu (Bacescu, 1960)
- E. bifuncilla (Holdich and Harrison, 1980)
- E. corniger (Nunomura, 1992)
- E. discolor (Nunomura, 1988)
- E. ferox (Haswell, 1884)
- E. forceps (Holdich and Harrison, 1980)
- E. froygattella sp. nov.
- E. insolita (Stebbing, 1905)
- E. lucanoides (Monod, 1926)
- E. monodi (Gurjanova, 1936)
- E. rangifer (Monod, 1926)
- E. rimifrons (Holdich and Harrison, 1980)
- E. sugashinaeus (Nunomura, 1981)
- E. volki (Müller, 1989a)

Euneognathia Stebbing, 1893
- E. gigas (Beddard, 1886)

Gibbagnathia gen. nov.
- G. europathridix sp. nov.

Gnathia Leach, 1814
- G. africanæ Barnard, 1914
- G. albeceens Hansen, 1916
- G. ales Monod, 1926
- G. asperti Monod, 1926
- G. beethovent Paul and Menzies, 1971
- G. biurki Holdich and Harrison, 1980
- G. bungoensis Nunomura, 1982
- G. calamitosa Monod, 1926
- G. calmoni Monod, 1926
- G. calvi Müller, 1993b
- G. canponentus sp. nov.
- G. clementensis Schultz, 1966
- G. cocki Müller, 1989c
- G. coronata Holdich and Harrison, 1980
- G. coronaquänsis Schultz, 1966
- G. crytopais Barnard, 1925
- G. demata (Sars, 1872)
- G. derzhavini Gurjanova, 1933
- G. disjuncta Barnard, 1920
- G. epopstruma sp. nov.
PHYLOGENY AND BIOGEOGRAPHY OF GNATHIIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. falcipennis</td>
<td>Holdich and Harrison, 1980</td>
</tr>
<tr>
<td>G. fallax</td>
<td>Monod, 1926</td>
</tr>
<tr>
<td>G. firingae</td>
<td>Müller, 1991</td>
</tr>
<tr>
<td>G. gonalezi</td>
<td>Müller, 1988</td>
</tr>
<tr>
<td>G. halei</td>
<td>Cals, 1973</td>
</tr>
<tr>
<td>G. hirayamai</td>
<td>Nunomura, 1992</td>
</tr>
<tr>
<td>G. illeipida</td>
<td>Monod, 1923</td>
</tr>
<tr>
<td>G. incana</td>
<td>Menzies and George, 1972</td>
</tr>
<tr>
<td>G. inopinata</td>
<td>Monod, 1925b</td>
</tr>
<tr>
<td>G. iridomyrmex</td>
<td>sp. nov.</td>
</tr>
<tr>
<td>G. johanna</td>
<td>Monod, 1926</td>
</tr>
<tr>
<td>G. lacunacapitalis</td>
<td>Menzies and George, 1972</td>
</tr>
<tr>
<td>G. latidens</td>
<td>(Beddard, 1886)</td>
</tr>
<tr>
<td>G. ligiophila</td>
<td>Müller, 1993a</td>
</tr>
<tr>
<td>G. magdalenensis</td>
<td>Müller, 1988</td>
</tr>
<tr>
<td>G. malaysiensis</td>
<td>Müller, 1993a</td>
</tr>
<tr>
<td>G. margaritaria</td>
<td>Monod, 1926</td>
</tr>
<tr>
<td>G. maxillaris</td>
<td>(Montagu, 1804)</td>
</tr>
<tr>
<td>G. meticola</td>
<td>Holdich and Harrison, 1980</td>
</tr>
<tr>
<td>G. mortenseni</td>
<td>Monod, 1926</td>
</tr>
<tr>
<td>G. mulitaria</td>
<td>Hale, 1924</td>
</tr>
<tr>
<td>G. mystrium</td>
<td>sp. nov.</td>
</tr>
<tr>
<td>G. nicembrula</td>
<td>Müller, 1989b</td>
</tr>
<tr>
<td>G. notostigma</td>
<td>sp. nov.</td>
</tr>
<tr>
<td>G. odontomachtis</td>
<td>sp. nov.</td>
</tr>
<tr>
<td>G. oxyuraea</td>
<td>(Lilljeborg, 1855)</td>
</tr>
<tr>
<td>G. panonse</td>
<td>Daguerre de Hureaux, 1971</td>
</tr>
<tr>
<td>G. phalloonajopsis</td>
<td>Monod, 1925b</td>
</tr>
<tr>
<td>G. philogona</td>
<td>Monod, 1926</td>
</tr>
<tr>
<td>G. piscivora</td>
<td>Paperna and Por, 1977</td>
</tr>
<tr>
<td>G. productatridens</td>
<td>Menzies and Barnard, 1959</td>
</tr>
<tr>
<td>G. proslatus</td>
<td>sp. nov.</td>
</tr>
<tr>
<td>G. puertoricensis</td>
<td>Menzies and Glynn, 1968</td>
</tr>
<tr>
<td>G. rathi</td>
<td>Kensley, 1984</td>
</tr>
<tr>
<td>G. rectifrons</td>
<td>Gurjanova, 1933</td>
</tr>
<tr>
<td>G. rhitidoponera</td>
<td>sp. nov.</td>
</tr>
<tr>
<td>G. samariensis</td>
<td>Müller, 1988</td>
</tr>
<tr>
<td>G. schmidtii</td>
<td>Gurjanova, 1933</td>
</tr>
<tr>
<td>G. serrulatiformis</td>
<td>Monod, 1926</td>
</tr>
<tr>
<td>G. stevemi</td>
<td>Menzies, 1962b</td>
</tr>
<tr>
<td>G. stigmaceros</td>
<td>sp. nov.</td>
</tr>
<tr>
<td>G. taprobansis</td>
<td>Monod, 1926</td>
</tr>
<tr>
<td>G. teisseri</td>
<td>Cals, 1972</td>
</tr>
<tr>
<td>G. tridens</td>
<td>Menzies and Barnard, 1959</td>
</tr>
<tr>
<td>G. trilobata</td>
<td>Schultz, 1966</td>
</tr>
<tr>
<td>G. trispathiona</td>
<td>Boone, 1918</td>
</tr>
<tr>
<td>G. tuberculata</td>
<td>Richardson, 1910</td>
</tr>
<tr>
<td>G. tuberculosa</td>
<td>(Beddard, 1886)</td>
</tr>
<tr>
<td>G. variobranchia</td>
<td>Holdich and Harrison, 1980</td>
</tr>
<tr>
<td>G. vellosa</td>
<td>Müller, 1988</td>
</tr>
<tr>
<td>G. venusta</td>
<td>Monod, 1925b</td>
</tr>
<tr>
<td>G. virginalis</td>
<td>Monod, 1926</td>
</tr>
<tr>
<td>G. vorax</td>
<td>(Lucas, 1849)</td>
</tr>
</tbody>
</table>

Monodgnathia gen. nov.

- M. colobostroma sp. nov.
- M. cristaletes (Stebbing, 1913)
- M. ponera sp. nov.
- M. poteriophora (Monod, 1926)

Paragnathia

- Omer-Cooper and Omer-Cooper, 1916

Thaumastognathia Monod, 1926

- T. diceros Monod, 1926
- T. metaphone sp. nov.
- T. orectognathus sp. nov.
- T. wasmannia sp. nov.

iltila is confined to the Indo-West Pacific region except for one species, *E. bacescui*, which is from the Mediterranean. Most species of *Elaphognathia* are confined to warm waters.

Holdich and Harrison (1980) suggested that more Australian species of Gnathiidae would be discovered once detailed surveys were completed in regions which had yet to be investigated. Sampling of the Australian coast, shelf and slope has yielded 28 new species of Gnathiidae, more than doubling the number of described Australian species to 45, of these 34 are found in the south-east. To date, only a few areas of northern Australia and no areas in the south-west have been intensively surveyed. Even in regions where detailed work has been carried out not all the potential habitats have been fully investigated. Further sampling is bound to yield more species of Gnathiidae.

Though only limited areas of the Australian coastline have been sampled, it is still clear that the continent possesses an extremely rich and diverse gnathiid fauna in intertidal, shelf and slope environments (Table 5). About one quarter of all the presently described species of Gnathiidae are found in Australian waters. All but three monotypic genera (*Bythognathia*, *Euneognathia* and *Paragnathia*) are represented.

Cals (1973) and Holdich and Harrison (1980) argued that it was premature to state that Australia has an endemic fauna but it now seems certain that this is true for at least southern Australia. The northern boundary along the eastern coast and the western boundary of all species are uncertain because of absence of sampling but there is little overlap between this fauna and the fauna of tropical Australia recorded by Holdich and Harrison. *G. calmani*, described from Vic-
Table 5. Habitat and distributional data for Australian Gnathiidae following format of Holdich and Harrison (1980: table 1) and incorporating new species and range extensions for previously described species from collections of the Museum of Victoria.

<table>
<thead>
<tr>
<th>Species</th>
<th>Substratum</th>
<th>Depth (m)</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathynathia alderzia sp. nov.</td>
<td>silt to clay</td>
<td>780-795</td>
<td>NW Coral Sea</td>
</tr>
<tr>
<td>B. cardiocentyla sp. nov.</td>
<td></td>
<td>868-1730</td>
<td>Off Freycinet Peninsula, Tas. and off Terrigal, NSW</td>
</tr>
<tr>
<td>B. opisthopsis sp. nov.</td>
<td></td>
<td>2632-2698</td>
<td>E of Newcastle, NSW</td>
</tr>
<tr>
<td>B. rolletia sp. nov.</td>
<td></td>
<td>800</td>
<td>47 km S of Cape Conran, Vic. and W coast of South Island, New Zealand</td>
</tr>
<tr>
<td>Cacognathia agwillisi (Seed, 1979)</td>
<td>tubes of Rhampobrachium sp. and colonies of Galeolaria sp.</td>
<td>intertidal</td>
<td>Aireys Inlet, Vic. and Elliston, SA</td>
</tr>
<tr>
<td>C. branchyporona sp. nov.</td>
<td>muddy coarse shell with many sponges</td>
<td>400-426</td>
<td>Nowra, NSW to Point Hicks, Vic,</td>
</tr>
<tr>
<td>C. diciprora sp. nov.</td>
<td>fine to coarse sand</td>
<td>15-103</td>
<td>Western Bass Strait and S of Newcastle, NSW</td>
</tr>
<tr>
<td>C. dolichoderus sp. nov.</td>
<td>fine to muddy sand</td>
<td>110-130</td>
<td>Eastern Bass Strait and E of Cape Banks, NSW</td>
</tr>
<tr>
<td>C. guamagynus sp. nov.</td>
<td>mud, sand and hard bottom and sponges</td>
<td>1000</td>
<td>S of Point Hicks, Vic.</td>
</tr>
<tr>
<td>C. huberla sp. nov.</td>
<td>sand and shell</td>
<td>27-185</td>
<td>Bass Strait and Broken Bay, NSW</td>
</tr>
<tr>
<td>C. lepanohlla sp. nov.</td>
<td></td>
<td>22-800</td>
<td>Bass Strait, E coast of Tas. and E of Sydney, NSW</td>
</tr>
<tr>
<td>C. paratetima sp. nov.</td>
<td>shaded, sessile invertebrates</td>
<td>20</td>
<td>Pearson I., SA</td>
</tr>
<tr>
<td>C. postula (Hale, 1924)</td>
<td>sponge</td>
<td>20</td>
<td>Glenelg, SA</td>
</tr>
<tr>
<td>C. trachyophytopus sp. nov.</td>
<td>mud to coarse sand with shells</td>
<td>21-283</td>
<td>Bass Strait</td>
</tr>
<tr>
<td>Elaphognathia bifurcata (Holdich and Harrison, 1980)</td>
<td>sand</td>
<td>10-18.2</td>
<td>Bowling Green Bay, Qld</td>
</tr>
<tr>
<td>E. forpus (Haswell, 1884)</td>
<td></td>
<td></td>
<td>Port Jackson, NSW to Portland, Vic.</td>
</tr>
<tr>
<td>E. forpus (Holdich and Harrison, 1980)</td>
<td></td>
<td></td>
<td>Rowses Bay, Qld</td>
</tr>
<tr>
<td>E. freygattella sp. nov.</td>
<td>coarse sand</td>
<td>84</td>
<td>35 km SSW of Cape Otway, Vic.</td>
</tr>
<tr>
<td>E. risbcrna (Holdich and Harrison, 1980)</td>
<td>sandy mud</td>
<td>6.8-8.8</td>
<td>Halifax Bay, Qld</td>
</tr>
<tr>
<td>Gibbognathia euphotorusc sp. nov.</td>
<td>medium to coarse sand</td>
<td>36-104</td>
<td>Bass Strait</td>
</tr>
<tr>
<td>Gnatius asperifrons Holdich and Harrison, 1980</td>
<td>rock scrapings</td>
<td>21-283</td>
<td>Lizard I., Qld</td>
</tr>
<tr>
<td>G. bitoris Holdich and Harrison, 1980</td>
<td>dead coral / barnacles</td>
<td>intertidal</td>
<td>Heron I. and Townsville, Qld</td>
</tr>
<tr>
<td>G. callithysa Monod, 1926</td>
<td>coarse sand to mud</td>
<td>29-204</td>
<td>Nowra, NSW to Eddystone Point, Tas. and west into central Bass Strait</td>
</tr>
<tr>
<td>G. calmaru Monod, 1926</td>
<td></td>
<td></td>
<td>Heron I., Qld and Portland, Vic,</td>
</tr>
<tr>
<td>G. camponotus sp. nov.</td>
<td>sand, bryozoans and dead coral</td>
<td>intertidal-113</td>
<td>Bass Strait and E of Port Jackson, NSW</td>
</tr>
<tr>
<td>G. corinna Holdich and Harrison, 1980</td>
<td>muddy to coarse sand and shell</td>
<td>55-135</td>
<td>Pallarenda, Qld</td>
</tr>
<tr>
<td>G. epospora sp. nov.</td>
<td>Teredo-bored wood</td>
<td>intertidal</td>
<td>44 km SW off Cape Otway, Vic.</td>
</tr>
<tr>
<td>G. lecitica (Holdich and Harrison, 1980)</td>
<td>medium sand</td>
<td>81</td>
<td>Magnetic I. and Lizard I., Qld and North West Shelf, WA</td>
</tr>
<tr>
<td>G. halei Cals, 1973</td>
<td>fine gravel to mud</td>
<td>136-188</td>
<td>Off Moreton I. and Capricorn Channel, Qld</td>
</tr>
<tr>
<td>G. iridonymex sp. nov.</td>
<td>red coralline algal turf</td>
<td>11</td>
<td>Portland, Vic, Flinders Passage, Qld</td>
</tr>
<tr>
<td>G. latteng (Beddard, 1886)</td>
<td>wood / barnacles</td>
<td>12.8</td>
<td>Townsville, Qld</td>
</tr>
<tr>
<td>G. metica (Holdich and Harrison, 1980)</td>
<td></td>
<td>intertidal</td>
<td>Vic. to WA</td>
</tr>
<tr>
<td>G. mullieria Hale, 1924</td>
<td>among Zostera sp.</td>
<td>12.8-14.6</td>
<td>Bass Strait</td>
</tr>
<tr>
<td>G. mysticus sp. nov.</td>
<td>muddy sand to shelly sand</td>
<td>57-130</td>
<td>S of Point Hicks, Vic. and off Broken Bay, NSW</td>
</tr>
<tr>
<td>G. motostigma sp. nov.</td>
<td>coarse sand and gravel</td>
<td>75-200</td>
<td>Western Port, Vic</td>
</tr>
<tr>
<td>G. odontophoroua sp. nov.</td>
<td>find sand and mud to sandy gravel</td>
<td>8-13</td>
<td>Nowra, NSW to Freycinet Peninsula, Tas.</td>
</tr>
<tr>
<td>G. prolatus sp. nov.</td>
<td>coarse sandy shell</td>
<td>363-1000</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Habitat Description</td>
<td>Depth Range (m)</td>
<td>Location</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>G. rhytidoponera sp. nov.</td>
<td>medium sand to gravel</td>
<td>296–303</td>
<td>Western Coral Sea</td>
</tr>
<tr>
<td>G. stigmacros sp. nov.</td>
<td></td>
<td>27–293</td>
<td>Eastern Bass Strait</td>
</tr>
<tr>
<td>G. variobranchia Holdich and Harrison, 1980</td>
<td>coral</td>
<td>intertidal</td>
<td>Heron L, Qld</td>
</tr>
<tr>
<td>Monodgnathia colubruma sp. nov.</td>
<td></td>
<td>1000</td>
<td>S of Point Hicks, Vic.</td>
</tr>
<tr>
<td>M. ponera sp. nov.</td>
<td></td>
<td>1550</td>
<td>Lord Howe Rise, Tasman Sea</td>
</tr>
<tr>
<td>Thaumastognathia metaphone sp. nov.</td>
<td>shaded, sessile invertebrates</td>
<td>20</td>
<td>Pearson L, SA</td>
</tr>
<tr>
<td>L. oncognathus sp. nov.</td>
<td>medium to very coarse sand</td>
<td>27–200</td>
<td>Bass Strait</td>
</tr>
<tr>
<td>T. wasmannia sp. nov.</td>
<td></td>
<td>122</td>
<td>20 km E. of Falmouth, Tas.</td>
</tr>
</tbody>
</table>

Victoria is also recorded from Heron I, Queensland but this is exceptional. This discovery of extreme endemism on the southern coast is consistent with the generalisations made by Wilson and Allen (1987). The extent to which the tropical Australian species extend into the Indo-West Pacific is unknown because of the low level of sampling elsewhere.

Moreover, even within the small area studied, many species have limited distributional range. The isopod collections of the Museum of Victoria are based on over 400 well-sorted samples of benthos from Bass Strait and the south-eastern Australian slope and of samples from sub-tidal rocky habitats. Only two species of more than 30 could be said to be moderately well distributed: Caecognathia leptanilla with records from 40 samples collected between 22 and 800 metres in Bass Strait and the eastern shelf and slope; and Caecognathia trachymesopus from 29 sites in Bass Strait between 21 and 293 metres. All other species are recorded from fewer than 11 samples. The shallow-water species with the greatest geographical range is G. mulieraria recorded from Victoria to Western Australia. Because so little collecting has been done in Western Australia the likelihood remains that other species have this sort of distribution.

The south-eastern Australian gnathiid fauna shows evidence of local radiation into endemic species complexes (see cladogram). The Caecognathia agwillisi-complex comprises C. pustulosa (not included in this analysis but clearly related to this complex), C. agwillisi, and C. paratrechia in South Australia and western Victoria and C. hubertia in Bass Strait and New South Wales. The cladogram suggests that the sister taxa of this group are species from Antarctic seas, C. calva and C. polaris. The C. trachymesopus-complex comprises C. trachymesopus, C. leptanilla and C. diacamma from shelf habitats in Bass Strait and south-eastern Australia and C. brachyponera from the slope in the same region.

Further evidence of local radiation is seen in Thaumastognathia whose four species are confined to the Australian or New Zealand shelf.

Although deep-water Australian species of the genera Bathygnathia and Monodgnathia are endemic they do not group into local complexes. The species seem to have arisen independently within widespread genera.

The species from the south-eastern slope have been recorded from few localities although two, G. prolasius, from 363 to 1000 m and C. leptanilla, 22 to 800 m, cover a wide depth range.

Bathygnathia vollehonovia, reported from 800 m, is the only species recorded from both sides of the Tasman Sea. The limited number of specimens of this species from the west coast of New Zealand are not distinguishable from those from the Australian eastern slope. More specimens are needed from both sides of the Tasman Sea to clarify the relationship between the Australian and New Zealand groups.

Only one species, B. opsithopsis, has been recorded below 2000 m in Australia and gnathiids are noticeably absent from the limited number of samples taken below this depth (Poore et al., 1994) and rare in other parts of the world. Only Bythognathia yucatanensis Camp from 3700–3800 m in the Caribbean, Caecognathia caeca Richardson from 2638 m in the western North Atlantic, and Bathygnathia segonzaci (Cals) from abyssal depths in the southern Atlantic have been reported from bathyal depths (Camp, 1988).

Gnathiidae Leach

Gnathides Leach, 1814: 432.

Gnathiidae. — Harger, 1880: 408. — Monod, 1926: 281–285 (synonymy) (and other authors)

Diagnosis. Pteryopods 1 modified as pylpods which lie under buccal cavity. Perconite 7 reduced, as wide as pleon. Pteryopods 7 absent.
Pleon narrower than pereon. Sexually dimorphic. Male head fused to first pereonite; mandible in male large and projecting forward, visible dorsally. Female and praniza larva with pereonites 4–6 fused, inflated. Praniza ectoparasitic on fish.

Key to genera of Gnathiidae

The key applies only to adult males and is written for ease of identification; it does not reflect the phylogenetic hypothesis.

1. Pylopod large, distinct; maxilliped 5-articled .. 2
 — Pylopod very thin and elongate (difficult to see even under dissecting microscope), pereopod-like; maxilliped absent or greatly reduced 9
2. Pylopod of 5 or 6 articles; article 3 not reduced 3
 — Pylopod of 2 or 3 articles; article 3 reduced or absent 7
3. Frontal border with processes, transverse; pronounced paraocular ornamentation present .. *Euneognathia*
 — Frontal border without processes, rounded or produced; lacking paraocular ornamentation .. 4
4. Pylopod pereopod-like, not operculate; pereonite 1 greatly produced *Bythognathia*
 — Pylopod operculate, not pediform; pereonite 1 not greatly produced ... 5
5. Pylopod 6-articled, article 2 reduced; mandibular blade dentate; animal small, < 5 mm .. *Paragnathia*
 — Pylopod 5-articled, article 2 greatly enlarged; mandibular blade smooth or absent; animal large, > 5 mm .. 6
6. Mandibles without blade; buccal cavity wall extension visible at the end of pronounced rostrum .. *Bathygnathia*
 — Mandibular blade smooth; frontal border rounded, without buccal cavity wall protrusion; pereopod 4 basis with quadratic lobe *Monodgnathia*
7. Frontal border without frontal process, often rounded; cephalon lacking paraocular ornamentation and dorsal sulcus *Caeceognathia*
 — Frontal border with frontal processes, often transverse; cephalon may possess paraocular ornamentation and/or a dorsal sulcus 8
8. Frontal border not deeply excavated, mandibles not elongate *Gnathia*
 — Frontal border excavated; mandibles long, lacking a dentate blade *Elaphognathia*
9. Pereon smooth, oval; pereonite 7 not visible; pleon often folded under pereon and antennae curved under mandibles; mandibles with crenulate blade and incisor .. *Thaumastognathia*
 — Pereon covered in granules and setae, rectangular; large dorsal, anteriorly-directed projection from pereonite 3; pereonite 7 visible, small; mandibles with highly reduced or absent blade, incisor absent *Gibbagnathia*

Bathygnathia Dollfus

Type species. Anceus bathybius Beddard, 1886 (original designation).
Diagnosis. Eyes absent or present. Frontal border produced as rostrum, often long; without processes; buccal cavity wall visible anterodorsally. Mandibles straight, without blade. Pereonite 1 reaching lateral margins of peron, not immersed in cephalon. Pylopod 5-articled; operculate, second article enlarged; article 3 with 1 or 2 spiniform setae; external margin lacking dense cover of plumose setae. Pereopod 4 basis without anterior quadrato lobe, ischium distally expanded or not; merus of pereopods laterally expanded in some species.

Remarks. Bathygnathia is characterised by a 5-articled, operculate pylopod, mandibles without obvious blade and the protruding rostrum and buccal cavity wall. Phylogenetic analysis separated the known species of Akidognathia into two groups. The first, including its type species, *A. oedipus*, belongs in a clade with species of Bathygnathia and is the sister taxon to the second clade. Akidognathia is therefore a junior synonym of Bathygnathia and a new genus, Monodgnathia, is needed for the second clade.

A. segonzaci Cals is very tentatively placed in Bathygnathia because of the shape of the mandible and the lack of a quadratic lobe on pereopod 4 but the description of this species is very brief and only the ventral surface was figured.

There are 12 species identified in the literature (Table 4) all confined to the deep sea at depths between 245 and 2698 m. The five newly described species of Bathygnathia are the first records of this genus from Australasian waters.

Key to males of Bathygnathia from Australia and New Zealand

1. Eyes present ... *B. adlerzia*
 — Eyes absent ... 2

2. Rostrum elongate, two-thirds length of cephalosome and narrow, one third width of cephalosome; pereopod 4 ischium not dilated distally ... *B. vollenhovia*
 — Rostrum rather broad, not elongate; pereopod 4 ischium dilated distally ... 3

3. Pereonites 1–4 with ornate margins, raised distally; cephalon covered with numerous granules ... *B. cardiocondyla*
 — Cephalon and pereonites 1–4 relatively smooth 4

4. Mandibles indurate, with pronounced incisor; rostrum and cephalon without diamond-shaped translucent region ... *B. opisthopsis*
 — Mandibles thin and flexible in preserved material, without incisor; diamond-shaped translucent region on anterior cephalon *B. tapinoma*

Bathygnathia adlerzia sp. nov.

Figures 4–6

Material examined. Holotype. North-western Coral Sea (10°32.1'S, 144°12.1'E), 780-795 m, epibenthic sled, ORV Franklin, 20 August 1988 (AM stn 06/88 site 3), AM P41294 (1 male).

Paratype. Type locality. AM P42273 (1 male).

Other material. Western Coral Sea (17°35'S, 146°53'E), 458–500 m, epibenthic sled. M. Pichon et al., on RV Cidaris, 15 Jun 1986 (stn 142.2), QM W19964 (1 male, anterior half only).

Description. Total length of holotype: 7.82 mm.

Cephalosome pentagonal, 1.4 times as long as wide, lateral margins convex. Rostrum wide and produced with ventrolateral walls of buccal cavity protruding. Holotype very heavily crystallised, no obvious remnants of setae visible on rostrum, rostrum badly torn. Eyes well developed, lateral, sessile and pale. External scissura smoothly rounded. Cephalosome long, one-third length of animal; with broad dorsal sulcus and low, posterior median tubercle. Antenna 1 peduncle article 2 with a large plumose seta distally; flagellum of 5 articles, with 1 aesthetasc. Antenna 2 peduncle twice as long as peduncle of antenna 1; flagellum incomplete, only three articles present. Mandible curved around rostrum, one-third length of cephalosome, cylindrical, lacking obvious blade, with unarmad carina; seta one-third way along; slight mandibular inci-
Figure 4. *Bathygnathia adlerzia*. Holotype, AM P41294; A2 of paratype, AM P42180.
Figure 5. Bathynathia adlerzia. Holotype, AM P41294; P2 of paratype, AM P42180.
Figure 6. Bathygnathia adlerzia. Holotype, AM P41294.

sor near base of seta; 1 conical internal lobe ventrally opposite seta. Maxillipeds 5-articled; external margins of articles 2 to 4 bearing plumose setae; endite clearly reaching article 3, wide, with 4 coupling hooks. Pylopods 5-articled; article 1 elongate, firmly attached to article 2; article 3 with 1 spiniform seta on external anterolateral margin and 7 simple setae medianly on ventral surface; article 5 minute.

Pereon widest anteriorly, slightly wider than cephalosome. Pereonite 1 large, laterally directed forward; dorsally reaching lateral margins and laterally visible as one continuous band. Pereonites 2 and 3 subequal, as wide as peronite 1. Pereonite 4 narrow, with anterior constriction. Pereonite 5 with dorsal sulcus as thin median groove, twice as long as pereonites 2 and 3. Pereonite 6 with small lobii. Pereonite 7 very narrow, overlapping pleon. Pleonites progressively longer and narrower, pleonal epimera prominent. Pleotelson subtriangular, longer than wide, with 7-8 pairs of simple setae laterally. Uropodal peduncle without setae; rami subequal, reaching well beyond the apex of pleotelson; internal margins of rami bearing numerous plumose setae.

Pereopods with many posterior spiniform setae, particularly on carpus and with dense cover of simple setae; bases of pereopods 2 and 3 narrower than bases of pereopods 4-6; pereopod 4 ischium distally produced.

Pleopods setose. Pleopod 2 endopod with
appendix masculina one-quarter length of rami. Penes 2 contiguous papillae.

Distribution. Western Coral Sea, 458–795 m depth.

Remarks. Bathynathia adlerzia is only the second species of Bathynathia described with functional eyes and as such, it is easily separated from all other species except B. magnifica Moreira from Brazil. It differs from B. magnifica by having a shorter rostrum, mandibles with marked incisors and pereopod 5 lacking a distal expansion of the ischium.

Bathynathia cardiocondyla sp. nov.

Figures 7–9

Material examined. Holotype. Eastern Bass Strait. 47 km S of Cape Conran, Vic. (38°24′.5″S, 148°42′.1″E), 1200 m, sand-silt-clay, pipe dredge, R.S. Wilson on RV Tangaroa. 15 Nov 1981 (stn BSS 632) NMV J8372 (1 male).

Paratype. Eastern Bass Strait, 121 km S of Cape Conran. (38°55.6′S, 148°46.4′E), 1730 m, silty clay, pipe dredge, R.S. Wilson on RV Tangaroa. 16 Nov 1981 (stn BSS 635) NMV J8371 (1 male).

Other material. New South Wales. East of Terrigal (33°26′S, 152°11′E), 868 m, sled-dredge, FV Kapala, 6 Dec 1979 (AM stn K79-20-12), AM P42099 (1 male).

Description. Total length of holotype: 6.85 mm.

Cephalosome pentagonal, as long as wide, lateral margins slightly convex. Eyes absent. Frontal border produced as broad rostrum; pointed, with 30 setae submarginally. Anterior margin of rostrum raised; buccal cavity wall visible anteriorly (particularly on paratype). Supraocular lobe smoothly convex. Cephalosome covered with numerous granules; broad dorsal sulcus in distal half and small posterior tubercle. Region between dorsal sulcus and frontal margin of rostrum translucent. Antenna 1 flagellum of 5 articles, with 2 aesthetases. Antenna 2 longer than antenna 1; flagellum of 6 articles (possibly some flagellum articles missing). Mandible half length of cephalosome, cylindrical with narrow apex; a slightly armed carina; pronounced proximal mandibular incisor; mandibular seta one-quarter way along; conical internal lobe ventrally opposite incisor. Maxilliped 5-articled; external margins of articles 2 to 4 bearing plumose setae; endite clearly reaching article 3, with 5 coupling hooks. Pyllopod 5-articled: article 3 with 2 pettine setae on external anterolateral margin; articles 2–4 with 13 setae medially; article 5 minute.

Pereon evenly sided, as wide as cephalosome except pereonite 5 which is wider around base of pereopods. Pereonite 1 dorsally raised forming saddle-like structure with pereonite 2 laterally; dorsally small, not reaching lateral margins of pereon and partially obscured laterally by pereonite 2. Pereonites 1–4 with granular ornate borders. Pereonite 4 with raised ornate ridge near posterior border. Pereonites 2 and 3 much shorter than 4–6, pereonite 5 longest. Pereonite 6 lobui thin and elongate. Pereonite 7 small, very narrow, overlapping pleon. Pleonites progressively narrower, pleonal epimera prominent. Pleotelson subtriangular, tapering, as wide as long; lateral margins sinuous with 3 pairs of simple setae laterally. Uropodal peduncle with 2 setae; rami subequal, reaching beyond apex of pleotelson, internal margins bearing numerous plumose setae.

Pereopods with dense cover of simple setae particularly on basis; pereopod 2 with 1 posterior spiniform seta on carpus; pereopod 4 with numerous tubercles, carpus wide and ischium with anterodistal projection.

Pleopods setose. Pleopod 2 endopod with appendix masculina subequal to rami. Penes 2 contiguous papillae.

Distribution. Southern NSW, eastern Bass Strait, 868–1730 m depth.

Remarks. Bathynathia cardiocondyla is easily identified and separated from all other Bathynathia. The raised and ornate appearance of the edges of the cephalon and pereonites 1–4 is unique amongst the Bathynathia but similar in some ways to Bythognathia yucatanensis Camp.

Bathynathia opisthopsis sp. nov.

Figures 10–12

Paratype. Type locality. AM P42105 (1 male).

Description. Total length of holotype: 7.67 mm.

Cephalosome pentagonal, as long as wide, lateral margins slightly convex. Eyes absent. Frontal border produced as broad rostrum; pointed and raised, with few submarginal setae. Buccal cavity wall clearly visible beyond anterior margin of rostrum. Supraocular lobe smoothly convex. Cephalosome smooth; with
Figure 1. Bathygnathia cardiocondyla. Holotype, NMV J8372.
Figure 8. *Bathygnathia cardiocondyla*. Holotype, NMV J8372.
Figure 9. Bathygnathia cardiocondyla. Holotype, NMV J8372; Dorsal view of cephalon paratype, AM P42099.

broad but shallow dorsal sulcus extending posteriorly to base of posterior median tubercle. Antenna 1 flagellum of 5 articles, with no aesthetase. Antenna 2 twice as long as antenna 1; flagellum of 8 articles. Mandible half length of cephalosome, cylindrical with tapered apex; armed carina extending to distal apex of mandible; pronounced mandibular incisor and conical internal lobe ventrally, opposite incisor. Maxilliped 5-articled; external margins of articles 2 to 4 bearing plumose setae; endite clearly reaching article 3, with 3 coupling hooks. Pylopod 5-articled; article 2 with 1 large acrola; article 3 with 2 strong setae on external antero-lateral margin; articles 2–3 with few short setae on ventral surface; article 5 minute.

Pereon evenly sided, as wide as cephalosome except pereonite 5 which is slightly wider around base of pereopods. Pereonite 1 narrow, clearly reaching lateral margins of pereon dorsally and visible laterally. Pereonites 2 and 3 much shorter than each of pereonites 4–6, pereonite 5 longest. Pereonite 6 lobii thin and elongate. Pereonite 7 small, overlapping narrow pleon. Pleonites progressively narrower, pleonal epimera not prominent. Pleotelson damaged; subtriangular, with rounded apex; wider than long; lateral margins sinuous with up to 4 pairs of simple, short setae
Figure 10. Bathygnathia opisthopsis. Holotype, AM P42181.
Figure 11. *Bathygnathia opisthopsis*. Holotype, AM P42181; P5 and P6 of paratype, AM P42105.
PHYLOGENY AND BIOGEOGRAPHY OF GNATHIIDAE

Figure 12. Bathygnathia opisthopsis. Holotype, AM P42181.

laterally. Uropodal peduncle without setae; rami subequal, long and narrow, reaching well beyond apex of pleotelson, external margins bearing numerous setae.

Pereopods with dense cover of simple setae particularly distally; pereopods 2 and 3 less stout than pereopods 4–6; ischium of pereopod 4 with very pronounced anterodistal projection, distally flattened with numerous small tubercles.

Pleopods setose. Pleopod 2 endopod with appendix masculina three-quarters or almost as long as rami. Penes 2 contiguous papillae.

Distribution. Southern NSW, 2632–2698 m.

Remarks. Bathygnathia opisthopsis possesses similar body proportions and similar mandibles to those of B. cardiocordyla but lacks the raised and ornate margins of the anterior pereonites. Both species are characterised by the weakly armed mandibular carina. B. opisthopsis was collected almost 1000 m deeper than any other specimen of Bathygnathia.

Bathygnathia tapinoma sp. nov.

Figures 13–15

Paratype. Type locality, NMV J4753 (2 males).

Other material. Type locality, NMV J4755 (1 female).

Description. Total length of holotype: 5.39 mm.

Cephalosome pentagonal, 1.4 times as long as wide, lateral margins convex. Entire frontal border produced as very wide rostrum with many setae on anterior margin; ventrolateral walls of buccal cavity protruding considerably beyond rostrum. Cephalosome with large, diamond-shaped translucent region on rostrum. Eyes absent. External scissura smoothly rounded. Antenna 1 flagellum of 5 articles, with 3 aesthetasc; antenna 2 longer than antenna 1; flagellum...
Figure 13. *Bathygnathia tapinoma*. Holotype, NZOL H-618.
Figure 14. Bathygnathia tapinoma. Holotype, NZOI H-618.
Figure 15. *Bathygnathia tapinoma*. Holotype, NZOI H-618.

of 8 articles. Mandible soft and flexible in preserved specimens; one-third length of cephalosome; distally raised in lateral view; apex curved inwards; cylindrical, with no recognisable blade; a unarmed carina; seta one-third way along; inferior conical internal lobe distal to seta. Maxilliped 5-articled; external margins of articles 2 to 4 bearing plumose setae; endite clearly reaching article 3, with 4 coupling hooks. Pylpod 5-articled; internal margin with few well-spaced long plumose setae proximally and short plumose setae distally; anteromedianly with numerous simple setae; article 1 elongate, firmly attached to article 2; articles 1 and 2 with arculeae; article 3 with 2 pectinate setae on external anterolateral margin; fifth article minute.

Pereon widest at pereonite 2, slightly wider than cephalosome; pereonites progressively longer. Pereonite 1 dorsally reaching lateral margins, divided into 3 regions by cephalon and partially obscured laterally by pereonite 2. Pereonite 3 narrowest, pereonites 4–6 progressively wider. Pereonite 4 with anterior constriction and thin median groove. Pereonite 5 with dorsal sulcus as thin median groove. Pereonite 6 with very small lobii. Pereonite 7 very narrow, overlapping pleon. Pleonites progressively longer and narrower; pleonal epimera not prominent. Pleotelson subtriangular, longer than wide; lateral margins straight; with 7–8 pairs of simple setae laterally and pair of seta on distal apex. Uropodal peduncle with 1 seta; endopod longer than exopod, reaching beyond apex of pleotelson; internal margins of rami bearing numerous plumose setae.

Pereopods with many posterior setae and dense cover of simple setae; pereopods 2 and 3 less robust than 4 to 6; pereopod 4 basis without quadrate lobe, ischium distally expanded as concave circular cusp with 10 or more tubercles.
Pleopods setose. Pleopod 2 endopod with appendix masculina three-quarters length of rami. Penes 2 contiguous papillae.

Distribution. West coast of South Island of New Zealand, 924 m.

Remarks. *Bathygnathia tapinoma* is most similar to *B. oedipus* (Stebbing) and both are characterised by the presence of a pronounced distal extension on the ischium of pereopod 4; weak mandibles located closer to the lateral margin on the frontal border than in most other species; and similar pereon and pleotelson dimensions. *B. tapinoma* differs from *B. oedipus* in possessing a wider yet shorter rostrum and a large diamond-shaped translucent region at the base of the rostrum.

Bathygnathia vollenhovia sp. nov.

Material examined. Holotype, Tasmania, off Freycinet Peninsula (42°2.20'S, 148°33.70'E), 800 m, coarse shelly sand, WHOI epibenthic sled, M.F. Gomon et al. on ORV Franklin, 27 Jul 1986 (sin SLOPE 45), NMV J19120 (1 male).

Other material. New Zealand, off W coast of South Island, (42°15.9'S, 170°18.8'E), 924 m, letter-box dredge, P.K. Probert, 17 Feb 1982 (NZOI sin Q689A), NMV J4754 (1 male).

Description. Total length of holotype: 9.66 mm.

Cephalosome pentagonal, 1.4 times as long as wide, lateral margins convex. Rostrum narrow and greatly produced; half length of cephalon; at base approximately one-third width of cephalosome; with many short setae on anterior margin. Ventrolateral walls of buccal cavity protruding anteriorly; cephalon with translucent elliptical region on rostrum (faded in some material). Eyes absent. External scissura smoothly rounded. Supraocular lobe very low, acute. Cephalosome with broad, shallow dorsal sulcus, two-thirds length of cephalon; low, very small posterior median tubercle. Antenna flagellum of antenna 1 of 5 articles, with 4 aesthetasae; antenna 2 longer than antenna 1; flagellum of 6 articles. Mandible subequal to length of cephalosome (excluding rostrum); proximal two-thirds slightly curved, distal third with internal margins parallel, forming vice-like structure; with unarmed carina; slight mandibular incisor almost half-way along; lacking seta. Maxilliped 5-articled; external margins of articles 2 to 4 bearing plumose setae; endite clearly reaching article 3, wide, with 5 coupling hooks. Pylopod 5-articled, with many setae medianly on ventral surface; margin of article 2 with several plumose setae; article 3 with 1 pectinate seta on external anterolateral margin; fifth article minute.

Pereon evenly sided, as wide as cephalosome. Pereonite 1 large, laterally directed forward; reaching lateral margins dorsally and visible as continuous band laterally. Pereonite 2 and 3 subequal, shorter than pereonites 4-6. Pereonite 5 with dorsal sulcus as thin median groove. Pereonite 7 very narrow, overlapping pleon. Pleonite 1 wider than other pleonites, pleonal epimera prominent. Pleotelson subtriangular, as wide as long, lateral margins sinuous with 17-18 pairs of simple setae laterally and 3 setae medially. Uropodal peduncle with 4 setae; endopod longer than exopod, reaching beyond apex of pleotelson; rami bearing numerous plumose setae distally.

Pereopods with dense cover of simple setae and with many strong posterior setae, particularly on carpus; pereopods 4-6 more stout than 2 and 3, with laterally enlarged merus.

Pleopods setose. Pleopod 2 endopod with appendix masculina half length of rami. Penes 2 contiguous papillae.

Distribution. Tasman Sea, off west coast of South Island of New Zealand and east coast of Tasmania, 800 m depth.

Remarks. Of the blind species, *Bathygnathia vollenhovia* is most similar to *B. bathybius* (Beddard) and *B. monodi* Cals. All possess a long narrow rostrum of similar proportions. These three species, and *B. eurichoristis* Richardson, *B. affinis* Birstein and *B. porca* Kensey, form a complex of species characterised by a most pronounced rostrum and expand merus of some or all of pereopods 2-6. *B. vollenhovia* differs from *B. bathybius* in possessing a more complex mandible characterised by incisors and an opposing straight distal region; and from *B. monodi* in a more complex and rounded mandible, shorter translucent elliptical region confined entirely to the rostrum and cephalon with a posterior tubercle and dorsal sulcus.

Bythognathina Camp

Bythognathina Camp, 1988: 668.

Type species. *Bythognathina yucatanensis* Camp, 1988 (original designation).

Diagnosis. Eyes absent. Frontal border produced into rostrum, without processes. Mandibles straight, lacking obvious blade. Pereonite 1...
Figure 16. *Bathygnathia vollenhovia*. Holotype, NMV J19120.
Figure 17. Bathygnathia volenhovia. Holotype, NMV J19120.
produced, partially obscuring pereonite 2; clearly reaching lateral margins of pereon. Pylopod 6-articled (sixth article fused), not operculate, subchelate and pediform.

Remarks. *Bythognathia* is a monotypic genus from very deep water in the Caribbean Sea (Camp, 1988). It is characterised by the very large and produced pereonite 1. *Bythognathia* is the only gnathiid with a 6-articled, non-operculate pylopod which is pediform and subchelate.

The phylogenetic analysis supports the retention of the generic name. The genus does not occur in Australia.

Caecognathia Dollfus

Gnathia (*Perignathia*) Monod, 1922: 645 (type species: *Anceus abyssorum* Sars, 1872 or *Gnathia fallass* Monod, 1926. See Remarks under *Gnathia*).

Type species. Anceus stygius Sars, 1877 (original designation).

Diagnosis. Eyes present. Frontal margin of cephalon produced, without frontal processes. Mandibles usually with smooth mandibular blade. Cephalon without paraocular ornamentation or dorsal sulcus. Pereonite 1 immersed in cephalon. Pylopod 2- or 3-articled, operculate, article 1 enlarged, article 3 small or absent.

Remarks. The type species of Heterognathia, H. adelaidensis, is a juvenile male of the common Antarctic species, Gnathia calva Vanhöffen (Wägele, 1987) herein transferred to Caecognathia. This genus is therefore a junior synonym of Caecognathia. The nomenclatural status of Perignathia is uncertain but of little consequence as long as it remains a junior synonym; see Remarks under Gnathia.

Gnathia and Caecognathia are closely related genera formerly synonymised. They share many similarities, particularly the structure of the pylopod but Caecognathia is distinguished by a produced frontal border lacking any frontal processes. The genus includes most species of Monod’s (1926) Sectio Productae of Gnathia.

The only previously described Australian species assigned to this genus are C. agwillisi (Seed, 1979) from rocky shores in Victoria (Fig. 2A) and C. pustulosa (Hale, 1924) from sponges in South Australia (Fig. 2B and Table 5).

Key to males of Australian species of Caecognathia

1. Pleotelson trapeziform, apex broadly truncated C. agwillisi
 — Pleotelson subtriangular ... 2

2. Cephalosome elliptical; pereon width evenly increasing posteriorly to pereonite 5; pereonite 6 with marked globular lobuii (see figs 19, 22, 34, 40) .. 3
 — Cephalosome roughly quadrilateral; pereon width not steadily increasing posteriorly; pereonite 6 without lobuii or at most with simple, rounded lobuii only ... 6

3. Rostrum produced .. C. leptanilla
 — Rostrum not produced ... 4

4. Pereonite 6 with pronounced suture midway along lateral margin .. C. diacamma
 — Pereonite 6 without suture ... 5

5. Pereonite 1 barely reaching lateral margins of body; frontal border smoothly rounded with rounded external scissura C. brachyonera
 — Pereonite 1 clearly reaching lateral margins of body, divided into 3 regions by posterior margin of cephalon; frontal border with a slight median indentation and very shallow external scissura C. trachymesopus

6. Cephalon with 3 furrows, 2 mesiolateral and 1 medially; pylopod 2-articled ... 7
 — Cephalon without furrows; pylopod 3-articled ... 9

7. Mandibles with internal quadrate lobe; pereonite 4 with posterior bilobed projection ... C. paratrechia
 — Mandibles lacking internal lobe; pereonite 4 with anterior spine 8

8. Body not setose; mandibles without mandibular setae, blade a smooth arc; cephalon without low tubercle, spine on pereonite 4 pronounced ... C. pustulosa
— Body setose, especially anteriorly; mandibles with mandibular setae, blade slightly assymetrical, produced; posterior cephalon with small tuberele

9. Mandibles with armed carina; small opaque spines on cephalon, visible in lateral view; frontal border produced as a rostrum; pereopod 4 basis not produced distally C. huberia

Mandibles cylindrical, without armed carina; no spines on cephalon; frontal border not produced as a rostrum; pereopod 4 basis expanded distally .. C. gnamptogerys

Caecognathia branchyponera sp. nov.

Figures 19–21

Material examined. Holotype, New South Wales, 44 km E of Nowra (34°55.79'S, 151°08.06'E), 429 m, muddy coarse shell, WHOI epibenthic sled. G.C.B. Poore et al. on RV *Franklin*, 22 Oct 1988 (stn SLOPE 56), NMV J27575 (1 male).

Paratypes. Type locality, NMV J19126 (6 males). Other material, Type locality, NMV J29889 (4 females), Vic. S of Point Hicks (38°17.70'S, 149°11.30'E), 400 m, coarse sand, gravel, mud, many sponges, WHOI epibenthic sled, M.F. Gomon et al. on RV *Franklin*, 24 Jul 1986 (stn SLOPE 40), NMV J19125 (80 specimens).

Description. Total length: 3.09 mm.

Cephalosome elliptical. 1.2 times as long as wide, lateral margins convex. Eyes well developed, lateral and sessile. Frontal border slightly produced, rounded; with 5 submarginal setae each side of mid-dorsal line. External scissura smoothly rounded. Supraocular lobe smoothly convex. Antennae stout, subequal; flagellum of antenna 1 of 5 articles, without aesthetasces; flagellum of antenna 2 of 3 articles. Mandible strongly curved, one-third length of cephalosome; with unarmed carina; smooth double-scalloped blade on distal two-thirds, distal scallop twice as long as proximal scallop; basal neck ventrally smoothly arced, dorsally covered by prounced crisma. Erisma with dense covering of fine setae on external margin. Maxilliped 5-articled; palp thin and elongate; external margins of articles 2–4 bearing plumose setae; endite clearly reaching article 3. wide. Pylopod 3-articled; internal margin of plumose setae; article 1 with 4 plumose setae on ventral surface; article 2 conical, proximal margin completely joined to article 1. with 3 setae on ventral surface; article 3 minute.

Pereon width increasing posteriorly; widest at pereonite 5, 1.75 times as wide as cephalosome; margins with numerous setae. Perconite 1 barely reaching lateral margins dorsally and partially obscured laterally by pereonite 2. Pereonites 5 and 6 each twice as long as pereonites 2–4; posterior border of pereonite 6 markedly concave with distinct gobular lobui. Pereonite 7 very narrow, overlapping pleon. Pleon with pleonites subequal, epimera prominent. Pleotelson sub-triangular, longer than wide; lateral margins slightly sinuous; with 3 pairs of plumose setae laterally and pair of setac on distal apex. Uropodal peduncle with 1 plumose seta on internodistal margin; rami subequal. not reaching apex of pleotelson; internal margins of rami bearing numerous plumose setae.

Pereopods with moderate cover of plumose setae, particularly on basis and few, pronounced lateral projections on anterior face of ischium to carpus.

Pleopods setose. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. Eastern Bass Strait, eastern NSW, 400–429 m.

Remarks. *Caecognathia branchyponera* belongs to a complex of species characterised by a roughly elliptical cephalosome; simple mandibles; pear-shaped peracon; presence of globular lobui; and distinct pylopods (article 2 is not circular). The three species *C. lepitanilla*, *C. trachymesopus* and *C. diacamma* also belong to this complex.

C. branchyponera most closely resembles *C. trachymesopus* though is distinguishable by the smaller peracon 1 which is not divided into three regions; a flatter frontal border with evenly spread small setae, a deeper external scissura and no median indentation.

Caecognathia diacamma sp. nov.

Figures 22–24

Material examined. Holotype, Victoria, western Bass Strait, 26 km SW of Cape Otway (39°01.0'S,
Figure 19. Caecognathia branchyponera. Holotype, NMV J27575.
Figure 20. *Caecognathia branchyponera*. Holotype, NMV J27575.
Phylogeny and Biogeography of Gnathiidae

315

143°22.1’E), 84 m. medium sand. WHOI epibenthic sled, M.F. Gomon et al. on RV Hai King, 31 Jan 1981 (stn BSS 120), NMV J27569 (1 male).

Victoria. Various collectors, 1980–1981. Western Bass Strait, 30 km SSW of Warrnambool (38°38.2’S, 142°35.0’E), 59 m, WHOI epibenthic sled (stn BSS 188), NMV J8321 (2 males). 51 km SSW of Cape Otway (39°16’S, 143°17’E), 90 m, medium sand, Smith-McIntyre grab (stn BSS 73), NMV J8320 (1 male). 35 km SSW of Cape Otway (39°06’S, 143°21’E), 59 m, coarse sand. Smith-McIntyre grab (stn BSS 57), NMV J8317 (2 males). 26 km SW of Cape Otway (39°01.0’S, 143°22.1’E), 84 m, medium sand, WHOI epibenthic sled (stn BSS 120), NMV J8313 (7 males). 25 km S of Cape Otway (39°06.7’S, 143°28.7’E), 92 m, fine sand, WHOI epibenthic sled (stn BSS 119), NMV J8312 (4 males). 11 km SSW of Cape Otway (38°58’S, 143°29’E), 67 m, medium sand. Smith-McIntyre grab (stn BSS 51), NMV J8319 (1 male). 15 km S of Cape Otway (39°00’S, 143°32’E), 79 m, medium sand (stn BSS 50, NMV J8318, (1 male). 25 km S of Cape Otway (39°06.0’S, 143°35.8’E), 95 m, fine sand. WHOI epibenthic sled (stn BSS 118), NMV J8315 (4 males), NMV J8314 (2 males).

Description. Total length of holotype: 5.29 mm.

Pale colour. Cephalosome elliptical; posterior margin only slightly curved, broad; cephalosome 1.3 times as long as wide, lateral margins convex. Eyes well developed, lateral and sessile. Frontal border slightly produced, rounded with slight median projection; 10 submarginal setae of differing sizes on each side of median projection. External scissura absent. Supraocular lobe smoothly convex. Antennae subequal; antenna 1 down-turned in lateral view, flagellum of 5 articles, long, only marginally shorter than peduncle, without aesthetascs; flagellum of antenna 2 of 6 articles. Mandible strongly curved, one-third length of cephalosome; with unarmed carina; smooth blade on distal two-thirds; basal neck smoothly arcaded; erisma pronounced. Maxilliped 5-articled, palp thin and elongate; external margins of articles 2–4 bearing plumose setae; endite clearly reaching article 3, wide. Pylopod 3-articled, with dense internal margin of plumose setae; article 1 with 75–80 plumose setae on ventral surface; article 2 conical, posterior margin completely joined to article 1, with 7 simple setae on ventral surface; article 3 minute.

Percon width increasing posteriorly; widest at perconite 5, 1.5 times as wide as cephalosome, margins with numerous fine, short setae. Perconite 1 dorsally reaching lateral margins and

Figure 21. Caeognathia branchyponera. Holotype, NMV J27575.
Figure 22. Caecognathia diacamma. Holotype, NMV J27569.
Figure 23. *Caecognathia diacamma*. Holotype, NMV J27569.
partially obscured laterally by pereonite 2. Pereonite 6 with pronounced globular lobuii and suture midway on lateral margins. Pereonite 7 very narrow, overlapping pleon. Pleon broad with irregular lateral borders; pleonites 1 and 5 narrower than others; epimera prominent. Pleotelson subtriangular, as wide as long, with numerous tubercules and 12-17 pairs of plumose setae laterally and 2 medianly. Uropod peduncle without setae; rami subequal, not reaching apex of pleotelson; exopod bearing numerous plumose setae. Pereopods with dense cover of plumose setae; with few lateral projections on anterior faces of ischium to carpus; pereopod 4 smaller than others. Pleopods setose. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. Western Bass Strait, 59-103 m.

Remarks. Caecognathia diacamma is characterised by the distinct suture on the lateral margins of pereonite 6.
Figure 25. Caecognathia dolichoderus. Holotype, NMV J27561.
Figure 26. Caccoguathia dolichodorus. Holotype, NMV J27561.
rostrum, 1.15 times as wide as long, lateral margins convex and irregular. Eyes well developed, lateral and sessile. Frontal border produced as rostrum, smoothly rounded with 14 setae spread submarginally. External scissura rounded. Supraocular lobe not pronounced. Cephalosome with many small spines anteriorly, visible in lateral view. Antennae stout, subequal; flagellum of antenna 1 of 5 articles, with 3 aesthetasc; flagellum of antenna 2 of 6 articles. Mandible one-third length of cephalosome with sparse covering of small fine setae; armed carina; pronounced mandibular incisor; mandible tightly closing around rostrum. Maxilliped 5-articled; external margins of articles 2-4 bearing plumose setae; endite clearly reaching article 3, wide, with 1 coupling hook. Pylopod 3-articled, internal margin lacking long setae; article 1 with 2 setae on ventral surface distally and 5 plumose setae at basis; article 2 with 1 seta on ventral surface; article 3 minute.

Pereon dorsoventrally flattened; widest anteriorly, as wide as cephalosome; covered with numerous long simple setae. Pereonite 1 dorsally fused with cephalosome and not visible laterally. Pereonites 2 and 3 subequal, pereonites 4-6 narrower and longer than 2 and 3; pereonite 6 with small, rounded lobui. Pereonite 7 very narrow, overlapping pleon. Pleonites progressively longer and wider, epimera prominent. Pleotelson subtriangular, longer than wide; lateral margins straight; with 2 pairs of simple setae and pair of setae on distal apex. Uropodal peduncle with 1 seta; endopod longer than exopod, reaching apex of pleotelson margins; rami bearing long simple setae.

Pereopods with moderate cover of large plumose setae, particularly on basis and ischium; elsewhere few, short simple setae. Pereopods 2 and 3 with few acute projections on lateral faces of merus–carpus.

Pleopods setose. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. Eastern Bass Strait, 115–130 m.

Remarks. *Caecognathia dolichodetus* does not closely resemble any previously described species. It is characterised by flat mandibles with a large incisor and very well armed carina, which fit snugly around the rostrum.

Caecognathia gnamptogenys sp. nov.

Figures 28–30

Material examined. Holotype. Victoria, S of Point Hicks (38°21.90'S, 149°20.00'E), 1000 m, WHOI epibenthic sled, G.C.B. Poore et al. on RV *Franklin*, 23 Jul 1986 (stn SLOPE 32), NMV J19116 (1 male).
Figure 28. Caecognathia gnantiogenys. Holotype, NMV J19116.
Figure 29. Caecognathia gnamptogenys. Holotype, NMV J19116.
Figure 30. Caecognathia gnamptogenys. Holotype. NMV J19116.

Description. Total length of holotype: 7.4 mm.

Cephalosome quasipentagonal, lateral margins posterior to eyes rounded, frontal margin rounded. Eyes ventrolateral. Frontal border produced, conical, with 12 setae submarginally each side in 2 rows of 6: 1 row on rounded ventral buccal wall extension; other row on frontal border. Lamina dentata visible. External scissura very shallow. Supraocular lobe very low, acute. Cephalosome with low, posterior median tubercle with 6-7 long setae. Antenna 2 longer than antenna 1; flagellum of antenna 1 of 5 articles, with 3 aesthetascs; flagellum of antenna 2 of 7 articles (right antenna 1 flagellum of only 3 articles and 1 aesthetasc, terminal article as long as 3 and 4 articles of left flagellum). Mandible straight, raised in lateral view, one-third length of cephalosome; cylindrical, lacking obvious blade; with unarmed carina. Maxilliped 5-articled; external margins of articles 2-4 bearing plumose setae; endite barely reaching article 3. Pylopod 3-articled, with internal margin of plumose setae; article 1 with 3 areolae, second areola very elongate, with 27 setae on ventral surface medianly; article 2 with 7 setae on ventral surface distally; article 3 minute.

Pereon widest anteriorly, wider than cephalosome, covered with numerous simple setae. Pereonite 1 dorsally fused with cephalosome, visible as 2 small regions laterally on cephalosome. Pereonite 3 with ventrolateral extensions, pereonites 5 and 6 together as long as 2 to 4 together. Pereonite 7 very narrow, overlapping pleon. Pleonites subequal, pleonal epimera prominent. Pleotelson elongate, 1.5 times as long as wide, with 2 pairs of simple setae. Uropodal peduncle with 1 seta; rami subequal, reaching apex of pleotelson; internal margins of rami bearing numerous plumose setae.

Pereopods with dense cover of simple setae. Percopod 3 smaller than others; basis of pereopod 4 with distal conical projection.

Pleopods setose. Pleopod 2 endopod with appendix masculina half length of rami. Penes 2 small contiguous papillae.

Distribution. Eastern slope of Bass Strait, 1000 m.
Remarks. *Caecognathia gnaptogenys* is characterised by the distal expansion of the basis of percopod 4; eyes situated more ventrolaterally than in other species; and short and simple mandibles. *C. serrata* (Richardson) from the Atlantic Ocean shares similar features but possesses a greatly produced frontal border.

Caecognathia huberia sp. nov.

Figures 31–33

Material examined. Holotype. Victoria, western Bass Strait. 50 km SSW of Warrnambool (38°49.5'S, 142°35.4'E), 89 m. coarse sand. R.S. Wilson on RV *Tangaroa*, 21 Nov 1981 (stn BSS 190). NMV J27565 (1 male).

Description. Total length of holotype: 2.99 mm.

Eyes well developed, lateral and sessile. Frontal border produced medially, truncated, with 2 slight lateral depressions near internal margin of mandible; 6 short setae medially and 4 longer setae laterally. External scissura deep, smoothly rounded. Supraocular lobe not pronounced. Cephalosome and pereon with numerous granules and long simple setae; with anterior, mesial furrow and shallower, oblique posterior mesolateral furrows and low, posterior median tubercle. Antennae stout, down-turned; antenna 1 longer than antenna 2, flagellum of 4 articles, with 3 aesthetascs; flagellum of antenna 2 of 4 articles, shorter than article 4 of peduncle. Mandible curved inward, one-third length of cephalosome, slightly asymmetrical; with unarmed carina; pronounced mandibular incisor one-third to half way along: short setae near incisor; smooth arc-shaped blade on distal half with long irregular basal neck proximally giving blade produced and irregular appearance. Maxilliped 5-articled; external margins of articles 2–4 bearing plumose setae; endite barely reaching article 3, with 2 coupling hooks. Pylopo- pod 2-articled, article 2 small; internal margin of fine short setae; article 1 operculate, with 4 setae distally on ventral surface; article 2 with 6 setae on ventral surface.

Pereon evenly sided, as wide as cephalosome. Pereonite 1 barely reaching lateral margins dorsally and partially obscured laterally by pereonite 2. Pereonite 4 with slight anterior constriction; small, anteriorly directed median spine and smoothly rounded median extension of posterior margin. Pereonite 5 with dorsal sulcus and areae laterales. Pereonite 6 with lobi laterales and rounded lobii. Pereonite 7 very narrow, overlapping pleon. Pleon progressively narrower, with numerous large setae; pleonal epimera prominent. Pleotelson subtriangular, wider than long, with pair of simple setae medianly and pair of setae on distal apex. Uropodal peduncle with 1 seta; endopod longer than exopod, reaching beyond the apex of pleotelson; rami margins with a few long simple setae.

Pereopods subequal, with few simple setae; few lateral projections, mainly on carpus and merus; tubercles on basis of pereopod 3 and basis-merus of pereopod 6.

Pleopods without setae. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. Bass Strait, 27–185 m.

Remarks. *Caecognathia huberia* belongs to a complex of south-eastern Australian species most easily recognised by the mesial and oblique posterior grooves on the cephalon. The other species in this complex are *C. pustulosa* (Hale), *C. agwillisi* (Seed) and *C. paraatrechia*. *C. huberia* is very similar to *C. pustulosa* (Hale) but differs by being hirsute, particularly anteriorly; possessing a smaller anterior spine on pereonite 4; possessing a distinct posterior extension on pereonite 4; smoothly rounded external scissura; and mandibles with a more complex blade and pronounced incisors.

Caecognathia leptanilla sp. nov.

Figures 34–36

Material examined. Holotype. Tasmania, central Bass Strait. 25 km SW of Cape Frankland. Flinders l. (40°09.4'S, 147°32.6'E), 51 m. shelly sand. WHOI epi-
Figure 31. Caecognathia huberia. Holotype, NMV J27565.
Figure 32. Caecognathia huberia. Holotype, NMV J27565.
benthic sled. R.S. Wilson on RV Tangaroa, 14 Nov 1981 (stn BSS 162), NMV J27562 (1 male).

Paratypes. Most collected by R.S. Wilson on RV Tangaroa using WHOI epibenthic sled, Nov 1981. Tasmania, western Bass Strait, 70 km W of Cape Farewell, King L, (39°38.2'S, 143°07.2'E), 127 m, mainly sand (stn BSS 195) NMV J8340 (1 male). Central Bass Strait, 44 km NE of Cape Wickham, King L, (39°22.0'S, 144°18.3'E), 60 m, coarse sand (stn BSS 203), NMV J8348 (1 male). 33 km S of Deal L, (39°48.3'S, 147°19.2'E), 60 m, muddy sand, Smith-McIntyre grab (stn BSS 161) NMV J8347 (1 male). 25 km SW of Cape Frankland, Flinders L, (40°09.4'S, 147°32.6'E), 51 m, shelly sand (stn BSS 162), NMV J8339 (4 males). Eastern Bass Strait, 20 km SSW of Babel L, (40°06.8'S, 148°24.3'E), 22 m, coarse shell, Smith-McIntyre grab (stn BSS 166), NMV J8344 (3 males). 37 km NNE of Eddystone Point (40°40.7'S, 148°36.9'E), 67 m, muddy sand (stn BSS 164), NMV J8338 (1 male).

Victoria, Western Bass Strait, 80 km WSW of Cape Otway (39°59'S, 142°37'E), 94 m, coarse sand, G.C.B. Poore on HMAS Kimbla, 9 Oct 1980 (stn BSS 62), NMV J8343 (1 male), 57 km SSW of Cape Otway (39°17'S, 143°14'E), 90 m, coarse carbonate sand, G.C.B. Poore on HMAS Kimbla, 10 Oct 1980 (stn BSS 72) NMV J8349 (1 male). Central Bass Strait, 6 km SE of Cape Schanck (38°33.4'S, 144°54.9'E), 55 m, medium sand (stn BSS 154), NMV J8560 (1 male). 38 km SW of Cape Paterson (38°56.4'S, 145°16.6'E), 70 m, fine sand (stn BSS 155), NMV J8341 (4 males), J35492 (1 male).

Eastern Bass Strait, 8 km S of Wilsons Promontory (39°12.9'S, 146°27.3'E), 65 m, medium sand (stn BSS 180), NMV J8345 (1 male). 43 km SE of Port Albert (38°53.7'S, 147°06.5'E), 58 m, coarse shell (stn BSS 177), NMV J8342 (2 males), 50 km SE of Port Albert (38°54.3'S, 147°13.4'E), 58 m, coarse shell, Smith-McIntyre grab (stn BSS 176), NMV J8346 (1 male).

Other material. 27 lots from 27-800 m depth in eastern Bass Strait and Tasmania, NMV collections.

Description. Total length of holotype: 5.08 mm.

Cephalosome roughly elliptical, 1.3 times as long as wide, lateral margins slightly convex. Eyes well developed, lateral and sessile. Frontal border produced dorsally into rostrum; smoothly rounded, with 10 submarginal setae of uniform size each side of mid-dorsal line. External scissura absent. Supraocular lobe smoothly convex. Antennae subequal, downturned in lateral view; flagellum of antenna 1 of 5 articles, with 3 aesthetascs, flagellum of antenna 2 of 6 articles. Mandible strongly curved, one-third length of cephalosome; with unarmored carina; smooth blade. Maxilliped 5-articled, palp thin.

Figure 33. Cacognathia huberta. Holotype, NMV J27565.
Figure 34. Caecognathia leptanilla. Holotype, NMV J27562.
Figure 35. Caecognathua leptanailla. Holotype. NMV J27562.
and elongate; external margins of articles 2–4 bearing plumose setae; endite clearly reaching article 3, wide. Pylopod 3-articled, internal margin of plumose setae; article 1 with about 35 plumose setae on ventral surface; article 2 conical, proximal margin completely joined to article 1, with 6 setae on ventral surface; article 3 minute.

Pereon width increasing posteriorly; widest at pereonite 5, twice as wide as cephalosome; covered with fine, short setae. Pereonite 1 dorsally reaching lateral margins, divided into 3 regions by posterior margin of cephalosome and partially obscured laterally by pereonite 2. Peronites progressively longer, except pereonite 2 and 3 subequal. Peronite 6 posterior border markedly indented; lobuii pronounced, globular. Pereonite 7 very narrow, overlapping pleon. Pleonites progressively longer; pleon tapered, pleonites 1 and 5 narrower than others; pleonal epimera prominent on pleonites 4 and 5. Pleotelson subtriangular, as wide as long, lateral margins slightly sinuous; with 15 pairs of plumose setae laterally and pair of setae on distal apex. Uropodal peduncle with 2 setae; rami subequal, reaching apex of pleotelson, bearing numerous plumose setae.

Pereopods with dense cover of simple setae, particularly on basis; with few lateral projections on anterior faces of ischium to carpus. Pereopods 2 and 3 with broad basis.

Pleopods setose. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. Bass Strait and eastern Tasmania. 27–800 m.

Remarks. *C. leptanilla* is characterised by its produced rostrum.

Caecognathia paratrechia sp. nov.

Figures 37–39

Material examined. Holotype. South Australia, Pearson I., E side in bay (23°57.30'S, 134°15.70'E), 20 m, bryozoans, sponges etc. on shaded surface, SCUBA,
Figure 37. *Caecognathia paratrechia*. Holotype, NMV J27578.
Figure 38. Caecognathia paratrechia. Holotype, NMV J27578.
G.C.B. Poore, 17 Apr 1985 (stn SA 55), NMV J27578 (1 male).

Description. Total length of holotype: 3.67 mm.

Cephalosome rectangular, 1.5 times as wide as long, lateral margins slightly convex. Eyes well developed, lateral and sessile. Frontal border produced medially, rounded with irregular border and median indentation; 3 long submarginal setae each side of median indentation. External scissura rounded. Supraocular lobe smoothly convex. Cephalosome with many long simple setae and numerous granules; with mesial furrow and shallow, oblique posterior mesolateral furrows. Antennae subequal; flagellum of antenna 1 of 5 articles, with 4 aesthetases, article 3 of peduncle longer than flagellum or peduncle articles 1 and 2 together; flagellum of antenna 2 of 5 articles, flagellum short, shorter than distal article of peduncle. Mandible scoop-shaped, strongly curved, one-third length of cephalosome; with unarmed carina; armed mandibular incisor one-third way along; slightly erenate blade; setae at base of incisor and prominent quadrat internal lobe at base of mandible. Maxilliped 5-articled; external margins of articles 2–4 bearing plumose setae; endite clearly reaching article 3, narrow. Pylopod 2-articled, internal margin of line short setae with 6–7 plumose setae on anteromesial margin; article 1 operculate with 23 setae on ventral surface medially; article 2 conical, with 9–10 setae on ventral surface.

Pereon widest posteriorly at pereonites 5 and 6, 1.2 times as wide as cephalosome; covered with numerous simple setae. Pereonite 1 dorsally reaching lateral margins and partially obscured laterally by pereonite 2. Pereonites 2 and 3 subequal, as wide as cephalon. Pereonite 4 narrow; with anterior constriction; thin median groove and posteriorly directed, bilobed extension of posterior border of pereonite 4. Pereonite 5 and 6 rounded, similar to praniza but not fused. Pereonite 5 with arecae laterales. Pereonite 6 with lobi laterales and rounded lobii. Pereonite 7 not visible. Pleotelson subtriangular, as wide as long; lateral margins sinuous; with 5 pairs of simple setae laterally. Uropodal peduncle without setae; rami rounded, subequal, reaching just beyond apex of pleotelson, bearing numerous plumose setae distally.

Pereopods with few simple setae; with many tubercles on ischium, merus and carpus, particularly on pereopod 4; pereopod 4 smaller than other pereopods.

Pleopods setose. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. SA, rocky habitats, 20 m.

Remarks. *C. paratreechiae* is characterised by the quadrat mandibular lobe and bilobed posterior projection on pereonite 4.
Caecognathia trachymesopus sp. nov.

Figures 40-42

Material examined. Holotype, Tasmania, central Bass Strait, 20 km NNE of North Point (40°32.0'S, 145°23'E), 44 m, muddy shell grit, Smith-McIntyre grab, M.F. Gomon and G.C.B. Poore on FV Sarda, 4 Nov 1980 (stn BSS 116), NMV J27571 (1 male).

Paratypes. Collected by M.F. Gomon and G.C.B. Poore on FV Sarda, 1980, unless otherwise noted. Tasmania, western Bass Strait, 55 km W of Stokes Point, King I. (40°06'S, 143°16'E), 187 m, fine sand, Smith-McIntyre grab, G.C.B. Poore on HMAS Kimbla, 11 Oct 1980 (stn BSS 101), NMV J8310 (1 male). Central Bass Strait, 23 km E of Cape Rochon, Three Hummock I. (40°22.2'S, 145°17'E), 40 m, mainly sand, WHOI epibenthic sled (stn 112), NMV J7799 (2), NMV J7798 (2), 20 km NNE of North Point (40°32.0'S, 145°23'E), 44 m, muddy shell grit, Smith-McIntyre grab (stn BSS 116), NMV J7796 (8), (40°23.8'S, 145°32'E), 66 m, muddy sand, Smith-McIntyre grab (stn BSS 113), NMV J7797 (2), 33 km S of Deal I. (39°48.3'S, 147°19.3'E), 60 m, muddy sand, WHOI epibenthic sled, R.S. Wilson on RV Tangaroa, 14 Nov 1981 (stn BSS 161), NMV J8304 (1).

Other material. 11 lots from Bass Strait, 27-293 m depth, NMV collections.

Description. Total length of holotype: 3.23 mm.

Brown. Cephalosome elliptical, 1.3 times as long as wide, lateral margins slightly convex. Eyes well developed, lateral and sessile. Frontal border slightly produced, rounded with small median indentation; with 9 submarginal setae each side of indentation, setae generally decreasing in size laterally. External scissura very shallow. Supraocular lobe smoothly convex. Antennae down-turned; antenna 1 slightly longer than antenna 2; flagellum of antenna 1 of 5 articles, with 3 aesthetascs; flagellum of antenna 2 of 4 articles. Mandible strongly curved, half length of cephalosome; with unarmed carina; smooth blade on distal half; basal neck smooth except for 1 rounded, posteriorly directed projection giving an uneven double-scalloped effect; erisma pronounced, covering base of mandible. Maxillipod 5-articled, palp thin and elongate; external margins of articles 2-4 bearing plumose setae; endite clearly reaching article 3, wide. Pylopod 3-articled, internal margin of plumose setae; article 1 with 24 setae on ventral surface; article 2 conical, posterior margin completely joined to article 1, with 5 setae on ventral surface; article 3 minute.

Peron width increasing posteriorly; widest at peronite 5, twice as wide as cephalosome; margins with numerous plumose setae. Peronite 1 dorsally reaching lateral margins, divided into 3 regions by posterior margin of cephalosome and partially obscured laterally by peronite 2. Peronites progressively longer; peronite 6 posterior border markedly indented; lobuli pronounced, globular. Peronite 7 very narrow, overlapping pleon. Pleon with pleonites subequal, pleonite 5 slightly longer than others. Pleotelson subtrianangular, as wide as long; lateral margins sinuous; with 8 pairs of plumose setae laterally and pair of setae on distal apex. Uropodal peduncle with 2 setae; endopod longer than exopod, not reaching apex of pleotelson; internal margins of rami bearing numerous plumose setae.

Basis to carpus of peropods with dense cover of plumose setae, particularly on basis; with few lateral projections on anterior face of ischium to carpus.

Pleopods setose. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. Bass Strait, 27-293 m.

Remarks. Caecognathia trachymesopus is similar to C. diaicamma but is differentiated by the less produced frontal border, narrower and longer cephalosome, more complex mandible and the lack of lateral sutures on peronite 6.

Elaphognathia Monod

Type species. Anceus ferox Haswell, 1885 (herein designated).

Diagnosis. Eyes present. Frontal margin of cephalosome transverse, deeply excavated; with
Figure 40. *Cacogathia trachymesopus*. Holotype, NMY 127571.
Figure 41. Caecognathia trachymesopus. Holotype, NMV J27571.
Figure 42. Caecognathia trachymesopus. Holotype, NMV J27571.

Frontal processes which may be emarginate. Mandibles long, cylindrical; often lacking mandibular blade though may possess numerous specialised structures. Perconite 1 immersed in cephalon. Pylopod 2- or 3-articled; operculate, articule 1 enlarged, generally with dense external margin of plumose setae; articule 3 small or absent.

Remarks. The subgenus Elaphognathia was erected by Monod (1926) for four species but none was selected as type species, then or since. As the first described Elaphognathia, Haswell's Australian species is designated here and the name elevated to generic rank.

Species of Elaphognathia are most easily recognised by the excavate frontal border and the elongate mandibles lacking any dentate blade.

The genus was described as Indopacific by Gurjanova (1936) and Bacescu (1960) and Tethyan in origin by Cals (1973). There are 13 species distributed through the Indo-West Pacific and Mediterranean. Of the five species known from Australia, one is newly described. The other four are briefly illustrated (see figs 2N–Q).

Key to males of Australian species of Elaphognathia

1. Supraocular lobe extended dorsally as crest, perconites 5–6 fused as in pran-
 zia stage .. E. rimifrons
 — Supraocular lobe not extended dorsally as crest, perconites 5–6 not fused
 .. 2

2. Mandibles almost twice as long as cephalon, perconite 1 obvious, pylopods
 without aerolae .. 3
 — Mandibles as long as cephalon, perconite 1 not visible, pylopods with
 aerolae ... 4

3. Mandibles with conical internal lobe at base, without small internal notch
 behind tip; mediofrontal process with 3 setae either side of median notch and
 not produced beyond base of mandibles ... E. fraygattella
 — Mandibles with large quadrate internal lobe at base and small internal notch
 behind tip; mediofrontal process produced beyond base of mandibles with 2
 acute lateral projections, no setae ... E. bifuscilla
4. Mandibles cylindrical, with 2–3 apical cuspae; cephalon without low median tubercle; pylopod 3-articled, with 2 plumose setae on anterior margin of article 1 (NB: specimens can lack the slight median projection found at the base of the rounded excavation of the frontal border, a characteristic used in previous keys) .. E. ferox
— Mandibles with small blade, lacking apical cuspae; cephalon with low median tubercle; pylopod 2-articled, article 1 with many plumose setae on margin .. E. forceps

Elaphognathia froygattella sp. nov.

Figures 43–45

Material examined. Holotype. Victoria, western Bass Strait, 35 km SSW of Cape Otway (39°07'0"S, 143°14.6'0"E), 84 m, coarse sand, WHOI epibenthic sled, R.S. Wilson on RV *Tangaroa*, 20 Nov 1981 (stn BSS 183), NMV J27568 (1 male).

Paratypes. Type locality, NMV J8374 (2 males).

Description. Total length of holotype: 5.09 mm.

Cephalosome rectangular, twice as wide as long, lateral margins convex. Eyes well developed, lateral and sessile. Frontal border deeply excavated mid-dorsally; mediofrontal process inferior, ventral to excavation, conical with large median notch, with 6 setae spread across base of notch; superior frontolateral process acute, directed anterolaterally, located at base of mandible, with 4 evenly spread setae on both margins. Inferior frontolateral process acute. External scissura very shallow. Supraocular lobe very low, acute. Antenna 1 directed ventrally in lateral view; flagellum of 5 articles, with 4 aesthetascs. Antenna 2 twice as long as antenna 1; flagellum of 7 articles. Mandible straight, twice as long as cephalosome; cylindrical, with no obvious blade; with unarmed carina and 2 conical internal lobes; distal lobe, one-third way along, directed anteriorly; proximal lobe, at base of mandible, directed posteriorly. Maxilliped 5-articled, endite clearly reaching article 3; palp broad with articles 2–5 wider than long, external margins bearing plumose setae. Pylopod 3-articled; article 1 with 4 setae on ventral surface medianly, distal internal margin bearing plumose setae; article 2 circular with 3 setae on ventral surface distally; article 3 minute.

Pereon evenly sided, as wide as cephalosome, margins with numerous setae. Pereonite 1 barely reaching lateral margins dorsally, partially obscured laterally by pereonite 2; pereonites 2 and 3 subequal, 4 wider than 5 and 6. Pereonite 7 not visible. Pleon broad, epimera prominent. Pleonites 2–4 subequal, pleonite 5 shorter than others. Pleotelson subtriangular, wider than long, lateral margins sinuous; with 3–5 pairs of simple setae. Uropodal peduncle with 3 setae; rami subequal, reaching beyond the apex of pleotelson, bearing numerous plumose setae distally.

Pereopods progressively longer, with dense cover of simple setae. Pereopod 6 with one anterior spiniform seta on merus, Pleopods setose. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. Western Bass Strait, 84 m.

Remarks. *Elaphognathia froygattella* is most similar to *E. bifurcilla* Holdich and Harrison from North Queensland, particularly in overall body proportions; the great length of the mandibles and their more lateral attachment. *E. froygattella* differs from *E. bifurcilla* in the smaller emarginate mediofrontal process, absence of an internal notch near the tip of the mandible and the different internal mandibular lobe.

Euneognathia Stebbing

Type species. *Anceu gigas* Beddard, 1886 (monotypy).

Diagnosis. Eyes present. Frontal margin of cephalon not produced; transverse, with frontal processes. Mandibles with blade and pseudoblade. Cephalon with paraocular ornamentation. Pereonite 1 immersed in cephalon. Posterior margin of pereonite 6 deeply excavated for pleon. Pylopod 5-articled; not operculate, with dense external margin of plumose setae.

Remarks. *Euneognathia* is a monotypic genus found around Antarctica (Schultz, 1978). It is the only genus of Gnathiidae with the combination of frontal processes and a 5-articled, non-operculate pylopod. *Euneognathia gigas* is a very large species, males being greater than 10 mm long. The species' status as member of a
Figure 43. *Elaphognathia froygattella*. Holotype, NMV J27568.
Figure 44. Elaphognathia froygattella. Holotype, NMV J27568.
monotypic genus is supported by the phylogenetic analysis.

Gibbagnathia gen. nov.

Type species. Gibbagnathia europalothrix sp. nov.

Diagnosis. Eyes present. Frontal border slightly produced. Mandibles simple, lacking distinct blade. Antenna 1 with stout peduncle. Mouthparts small; pylpod pediform and maxillipeds of 2 articles. Pereon rectangular, with numerous setae and small granules; pereonite 3 with large anteriorly directed projection; pereonite 7 visible. Pleon wide, with prominent epimera.

Etymology. From gibba (Latin), meaning a hump, referring to the dorsal prominence on pereonite 3 and Gnathia.

Remarks. Gibbagnathia is a monotypic genus confined to Bass Strait, the only species being *G. europalothrix*. It is most easily distinguished from other Gnathidae by the large anteriorly directed projection originating dorsally from pereonite 3. **Gibbagnathia** and *Thaumastognathia* both have reduced maxillipeds and small, pediform pylpods but differ largely in the shape of the pereon and mandibles.

Gibbagnathia europalothrix sp. nov.

Figures 46, 47

Paratypes. Tasmania, western Bass Strait, 48 km NNW of Cape Farewell, King I. (39°22'S, 143°28'E), 104 m, medium sand, carbonate, G.C.B. Poore on HMAS Kimbla, 10 Oct 1980 (stn BSS 78), NMV J8369 (2). 47 km NW of Cape Farewell, King I. (39°20'S, 143°34'E), 95 m, coarse sand, carbonate, G.C.B. Poore
on HMAS Kimbla, 10 Oct 1980 (stn BSS 77), NMV J8368 (1 male). Central Bass Strait, 44 km NE of Cape Wickham, King I. (39°22.0'S, 144°18.3'E), 60 m, coarse sand, R.S. Wilson on RV Tangaroa, 23 Nov 1981 (stn BSS 203), NMV J8365 (1 male), Eastern Bass Strait, 30 km N of North Point, Flinders I., (39°26.3'S, 147°54.7'E), 49 m, medium sand, Smith-McIntyre grab, R.S. Wilson on RV Tangaroa, 17 Nov 1981 (stn BSS 173), NMV J8367 (1 male).

Victoria, Western Bass Strait, 30 km SSW of Warndambool, (38°38.2'S, 142°35.0'E), 59 m, WHOI epibenthic sled, R.S. Wilson on RV Tangaroa, 20 Nov 1981 (stn BSS 188), NMV J8370 (1 male), Eastern Bass Strait, 19.1 km W of Pt Ricardo (37°50.57'S, 148°25.02'E), 36 m, sand-shell, Smith-McIntyre grab, Marine Science Laboratories on FV Sarda, 26 Sep 1990 (stn MSL-EG 43), NMV J24633 (1 male).

Description. Total length of holotype: 2.03 mm.

Cephalosome rectangular, 2.4 times as wide as long, lateral margins straight. Cephalosome and anterior pereon covered with numerous setae. Eyes well developed, lateral and sessile, not easily visible dorsally. Frontal border slightly produced medianly, with 6 setae submarginally, in 2 clumps of 3. Lamina dentata visible, external scissura very shallow. Supraocular lobe not pronounced dorsally, raised in lateral view as distinct projection. Antennae stout, antenna 2 longer than antenna 1; flagellum of antenna 1 of 4 articles, with 3 aesthetascs, peduncle articles slightly rounded; flagellum of antenna 2 of 5 articles. Mandible located on median projection; close set, straight; half length of cephalosome; dorsoventrally flattened; thin and flexible in preserved specimens without obvious blade or features, raised in lateral view. Maxilliped very reduced, of 2 articles with 4 setae distally. Pylopod thin, elongate, 4-articled, all with seta, terminal article minute.

Pereon evenly sided, as wide as cephalosome, covered with numerous simple setae except for pereonite 5. Pereonite 1 dorsally small, not reaching lateral margins and partially obscured laterally by pereonite 2. Pereonite 2 slightly produced anterolaterally. Pereonite 3 with large, distinct anteriorly directed, bilobed projection partially overhanging pereonites 1 and 2. Pereonite 4 with narrow anterior constriction. Pereonite 6 posterior border deeply concave, with large extensions lateral to pleon. Pereonite 7 very narrow, overlapping pleon. Pleon wide except pleonite 1 which is constricted by pereonite 6; pleonite 2 three-quarters width of pereon; pleonites 3–5 decreasing in width posteriorly. Pleotelson subtriangular, wider than long, lateral margins sinuous with 1 pair of simple setae laterally and pair of setae on distal apex. Uropodal peduncle without setae; endopod twice as long as exopod, reaching beyond apex of pleotelson; rami bearing numerous plumose setae distally.

Pereopods with moderate cover of plumose and simple setae, plumose setae confined mainly to basis and ischiurn; pereopods 2 and 6, larger than pereopods 3–5, with setae scales on ischiurn.

Pleopods setose. Pleopod 2 endopod lacking appendix masculina. Penes fused as 1 small papilla.

Distribution. Bass Strait, 36–104 m depth.

Remarks. *G. europalothrix* has similar mouthparts to species of *Thaumatognathia* but differs by possessing a rectangular pereon with a deeply conical posterior border, straight pleon with pronounced epimera and straight mandibles without a distinct blade. *G. europalothrix* is most easily identified by the very large anteriorly directed projection on pereonite 3.

Gnathia Leach

Gnathia Leach, 1814: 386, 402. — Monod, 1926: 326–329 (part) and numerous other authors.

Anceous Risso, 1816: 8 (type species: _Anceous forficularius_ Risso, 1816).

Praniza Latreille, 1817: 54 (type species: _Onciscus marinus_ Slabber, 1778).

Zuphea Risso, 1826: 104 (type species: _Zuphea sparicola_ Risso, 1826).

Gnathia (Gnathia) s.s. — Monod, 1926: 329 (part).

Type species. *Gnathia terrmitoides* Leach, 1814 (= *Cancer maxillaris* Montagu. 1804) (monotypy)

Diagnosis. Eyes usually present. Frontal margin of cephalon generally transverse, with frontal processes. Mandibles usually with dentate mandibular blade and mandibular incisor. Cephalon may possess paracocular ornamentation and/or a dorsal sulcus. Peronite 1 immersed in cephalon. Pylopod 2- or 3-articled; operculate, article 1 enlarged, generally with dense external margin of plumose setae; article 3 small or absent.

Remarks. The genera _Anceous_, _Praniza_, and _Zuphea_, are all based on European gnathiid larval stages whose specific identities are impossible to confirm (Monod, 1926). They have therefore traditionally been treated as junior
Figure 46. Gibbagnathia europalothis. Holotype, NMV J8366.
Figure 47. Gibbagnathia europalothrix. Holotype, NMV J8366.
synonyms of *Gnathia* and, in the case of *Praniza*, as the name for the larval stage of all gnathoids.

Our concept of *Gnathia* is narrower than that of Monod (1926). A fifth generic name treated as a junior synonym by him, *Caecognathia* Dollfus, 1901, is herein revived for a monophyletic group of species once placed in *Gnathia* but now considered the sister taxon of *Gnathia* + *Elaphognathia*. Wägele (1987) proposed that *Heterognathia* Amar and Roman, 1974 is a junior synonym of *Gnathia* but with the restriction of the generic concept it becomes a junior synonym of *Caecognathia* instead.

Elaphognathia Monod, 1926, hitherto a subgenus, is elevated to generic rank.

Perignathia Monod, 1922 is problematical name. It was erected as a genus for *Anceus abyssorum* Sars, a species we believe to be a member of *Caecognathia* Dollfus and could therefore be its junior synonym. Later, Monod (1926) admitted that the material on which he based his generic diagnosis was not Sars' species and he reidentified it as *Gnathia fallax* Monod, 1926, a member of *Gnathia* s.s. The type species is therefore subject to dispute and can only be decided by reference to the ICZN. As long as the name is viewed as a junior synonym its type species is of little consequence. Monod (1926) further complicated the issue by excluding both potential type species from *Perignathia* and using it as a subgeneric name for another, *Gnathia triospatthiona* Boone, 1918. If this species were to warrant generic or subgeneric status it would require a new generic name but our analysis suggests that this is not so.

Gnathia is the largest genus in the family whose species are recognised by the possession of a broad 2- or 3-articled pylopod, presence of frontal processes, a straight frontal border, and non-elongate mandibles with dentate blade. We are unable to find a unifying synapomorphy of *Gnathia* but treat it as a paraphyletic taxon formed by the exclusion of species of the monophyletic *Elaphognathia* from a larger clade. Eleven species from Australia have already been described (see Table 5) and are briefly figured (see fig. 2).

Key to males of species of *Gnathia* from Australia

1. Cephalon with a very large tubercle in anterior midline and 2 smaller tubercles near base of the mandibles. Paraocular ornamentation a single tubercle anterior to oblique ridge of 3 small tubercles *G. mutilaria*
 - Cephalon not so ... 2
2. Penes fused and produced ... 3
 - Penes not fused and produced ... 4
3. Penes very large, directed posteriorly; mediofrontal process sharply conical; pylopod 2-articled with 3 areolae on article 1 ... *G. falcipenis*
 - Penes small, directed anteriorly; mediofrontal process rounded with 2 setae each side; pylopod 3-articled, with 2 areolae *G. eplopostrum*
4. Dorsum dived by shallow grooves marked by lines of chromatophores; paraocular ornamentation as a mediolateral ridge, eyes overhanging in lateral view .. *G. cornuta*
 - Cephalon not so ... 5
5. Pleopods unequal, anterior pair naked, 2–3 times the size of the 3 setose posterior pairs ... *G. variobranchia*
 - Pleopods subequal .. 6
6. Paraocular ornamentation present .. 7
 - Paraocular ornamentation absent ... 13
7. Pylopod lacking internal margin of plumose setae, length greater than twice width ... 8
 - Pylopod with internal margin of plumose setae, length about twice the width ... 9
8. Superior frontolateral process large and circular, lacking setae; mandibular blade slightly crenulate G. prolasius
 — Superior frontolateral processes small and conical, with many setae; mandibular blade smooth G. stigmatosus

9. Inferior frontal border relatively straight, crenulate G. metictola
 — Frontal border with mediofrontal process .. 10

10. Paraocular ornamentation extremely pronounced, particularly in lateral view; frontal border produced; maxillipeds endite narrow . G. notostigma
 — Paraocular ornamentation not extremely pronounced; frontal border at most only slightly produced; maxillipeds endite broad .. 11

11. Mandibles slightly asymmetrical, lacking incisor, less than half length of cephalon; mediofrontal process superior; pereon without anterior constriction on peronite 4 .. G. calamitosa
 — Mandibles symmetrical, with incisors, greater than half length of cephalon; mediofrontal process inferior; pereon with anterior constriction on peronite 4 .. 12

12. Cephalon and anterior pereon with granules; mandibles with pseudoblade; pylopod with areolae; mediofrontal process conical with many notches on lateral margins .. G. campontus
 — Cephalon and pereon without granules; mandibles lacking pseudoblade; pylopod with areolae; mediofrontal process truncate; dorsal sulcus on peronite 5 .. G. biorbis

13. Mandibles without incisors .. 14
 — Mandibles with incisors .. 17

14. Frontal border produced .. 15
 — Frontal border not produced .. 16

15. Mandibles with dorsal lobe; frontal border lacking setae . G. rhytidophonera
 — Mandibles without dorsal lobe; frontal border with 8–9 setae in row, each side of mediofrontal process .. G. halei

16. Peronite I not visible; mandibles inflected upwards at 90°; mediofrontal process bifid; sparsely setose .. G. mystrium
 — Peronite I visible; mandibles not inflected; mediofrontal process trifid; heavily setose .. G. iridomyrmex

17. Mediofrontal border smooth .. G. asperifrons
 — Mediofrontal border of cephalosome, between mandibles, markedly toothed or notched .. 18

18. Mediofrontal process trifid, half length of superior frontolateral process .. G. calmani
 — Mediofrontal process a single projection, as long as superior frontolateral processes .. 19

19. Mandible with mandibular seta, lacking pseudoblade; pleopods without setae; dorsally setose; pereon without granules; cephalon rectangular .. G. odontomachus
 — Mandible lacking mandibular seta, with pseudoblade; pleopods setose; not dorsally setose; cephalon and anterior pereon with granules; cephalon quadrate .. G. latidens
Gnathia camponotus sp. nov.

Figures 48–50

Material examined. Holotype. Tasmania, eastern Bass Strait. 100 km NE of North Point, Flinders I. (38°52.6'S, 148°25.2'E), 130 m, fine sand, WHOI epibenthic sled. R.S. Wilson on RV Tangaroa, 15 Nov 1981 (stn BSS 170), NMV J127566 (1 male).

Paratypes. Type locality, NMV J8322 (20 males). 37 km NNE of Eddystone Point (40°40.7'S, 148°36.9'E), 67 m, muddy sand, WHOI epibenthic sled. R.S. Wilson on RV Tangaroa, 14 Nov 1981 (stn BSS 164), NMV J8327 (3 males). 70 km ENE of North Point, Flinders I. (39°28.4'S, 148°41.8'E), 110 m, coarse sand, naturalists' dredge, G.C.B. Poore on HMAS *Kimbla*, 28 Mar 1979 (stn BSS 35), NMV J8331 (1).

Victoria, eastern Bass Strait. 43 km SE of Port Albert (38°53.7'S, 147°06.5'E), 58 m, coarse shell. Smith-McIntyre grab. R.S. Wilson on RV Tangaroa, 18 Nov 1981 (stn BSS 177), NMV J8323 (3). 50 km SE of Port Albert (38°54.3'S, 147°13.4'E), 58 m, coarse shell, WHOI epibenthic sled, R.S. Wilson on RV Tangaroa, 18 Nov 1981 (stn BSS 176), NMV J8330 (3). 40 km SSW of Lakes Entrance (38°18.0'S, 147°37.0'E), 55 m, muddy fine shell, WHOI epibenthic sled. M.F. Gomon and R.S. Wilson on FV *Silver Gull*, 31 Jul 1983 (stn BSS 209), NMV J8328 (3).

Other material. Bass Strait, 44–115 m, NMV J8325 (1); NMV J8324 (7); NMV J8332 (4), NMV J8329 (2); NMV J8326 (2).

Description. Total length of holotype: 3.36 mm.

Cephalosome quadrate, lateral margins convex. Numerous very fine granules on cephalosome and anterior pereon. Eyes well developed, lateral and sessile. Frontal border transverse; mediofrontal process inferior, conical with marked notches and 2 long setae laterally; superior frontal lateral process smoothly conical, half length of mediofrontal process. Lamina dentata visible. External scissura very shallow. Supraocular lobe not pronounced, ventral accessory supraocular less rounded. Cephalosome with broad dorsal sulcus; paraocular tubercles and setae; with small posterior median tubercle at base of sulcus; with translucent elliptical region anteromedianly, above buccal cavity. Antenna 2 longer than antenna 1; flagellum of antenna 1 of 5 articles, with 2 aesthetasces; flagellum of antenna 2 of 7 articles. Mandible straight, two-thirds length of cephalosome; with unarmred carina; slight mandibular incisor halfway along; ventral dentate blade on distally half, with smooth pseudoblade dorsally; internal lobe on proximal half a long crenulate lamina; basal neck short. Maxilliped 5-articled; external margins of articles 2–4 bearing plumose setae; endite barely reaching article 3. Pylopod 3-articled, internal margin of plumose setae; article 1 with 3 areolae along internal margin, with 13 setae distally on ventral surface and along external margin; article 2 with 4 setae distally on ventral surface; article 3 minute.

Pereon evenly sided, as wide as cephalosome. Pereonite 1 dorsally reaching lateral margins, divided into 3 regions by posterior margin of cephalosome and partially obscured laterally by pereonite 2 and cephalon. Pereonites 2 and 3 subequal; 4 with anterior constriction; 5 and 6 together longer than others together. Pereonite 7 very narrow, overlapping pleon. Pleonites progressively narrower after pleonite 2. Pleonal epimeron prominent on pleonites 4 and 5. Pleotelson subtriangular, as wide as long, with 2 pairs of simple setae and pair of setae on distal apex. Uropodal peduncle with 3 setae; rami subequal, reaching apex of pleotelson; rami bearing numerous plumose setae distally.

Pereopods of typical gnathiid form with few simple setae.

Pleon neuropods. Pleopod 2 endopod with appendix masculina half length of rami. Penes 2 small contiguous papilae.

Distribution. Bass Strait, 55–130 m depth.

Remarks. This species most closely resembles *G. latidens* (Beddard) from north-eastern Australia. These two species are characterised by an inferior conical mediofrontal process which is wider than long and a smaller superior frontolateral processes.

G. camponotus differs from *G. latidens* in possessing a regularly notched mediofrontal process, a small tubercle on the posterior cephalon and paraocular ornamentation.

Gnathia eopapostruma sp. nov.

Figures 51–53

Material examined. Holotype. Victoria, western Bass Strait. 44 km SW of Cape Otway (39°06.3'S, 142°55.6'E), 81 m, medium sand, R.S. Wilson et al. on RV Tangaroa, 21 Nov 1981 (stn BSS 192), NMV J8373 (1 male).

Description. Total length of holotype: 3.83 mm.

Specimen damaged, missing left mandible and slightly deformed. Cephalosome quadrate, lateral margins straight. Eyes well developed, lateral and sessile. Frontal border produced; mediofrontal process superior, rounded with 2 setae laterally; superior frontolateral process conical, with 4–5 setae on external margin. External scissura very shallow. Supraocular lobe
Figure 48. *Gnathia camponotus*. Holotype, NMV J27566.
Figure 49. *Gnathia camponotus*. Holotype, NMV J27566.
not pronounced. Cephalosome with short, broad dorsal sulcus; crenulate paraocular ridge partially obscuring eyes. Antennae normal; antenna 2 twice as long as antenna 1; flagellum of antenna 1 of 5 articles, with 1 aesthetasc; flagellum of antenna 2 of 7 articles. Mandible raised distally, subequal to length of cephalosome; with long, acute apex, one-third length of mandible; unarmored carina and lacking incisor; seta at midpoint; with crenulate blade in middle third; proximally with internal lobe a crenulate lamina; basal neck obvious. Maxilliped 5-articled; external margins of articles 2-4 bearing plumose setae; maxilliped endite clearly reaching article 3, narrow. Pylopod 3-articled, internal margin of plumose setae; article 1 with 2 small areolae and 8 setae on ventral surface, 6 distally; article 2 with 8 setae on ventral surface; article 3 minute.

Pereon widest anteriorly, as wide as cephalosome; covered with numerous simple setae. Peronite 1 dorsally small, not reaching lateral margins and partially obscured laterally by peronite 2. Peronite 2 and 3 subequal; peronite 4 with anterior constriction; peronite 6 longest. Peronite 7 very narrow, overlapping pleon. Pleonites subequal, pleonal epimera prominent.

Pleotelson subtriangular, as wide as long, lateral margins sinuous; with 3 pairs of simple setae and pair of setae on distal apex. Uropodal peduncle with 4 setae; rami subequal, reaching beyond apex of pleotelson; internal margins of rami bearing numerous plumose setae.

Pylopod subequal, with moderate cover of simple setae; peronite 2 with 1 posterior pectinate seta on carpus; posterior margin of merus of pereopods 5 and 6 with row of short, fine setae.

Pleopods setose. Pleonite 2 endopod lacking appendix masculina. Penes prominent, present as 2 large papillae.

Distribution. Western Bass Strait, 81 m depth.

Remarks. Gnathia epopostruma is most similar to G. falcipennis Holdich and Harrison. Both species possess a trifid, produced frontal border; raised paraocular ornamentation and similarly proportioned cephalon and pereon. G. epopostruma differs in having a rounded, not sharply conical mediofrontal process; a more hirsute habitus; paraocular ornamentation which overhangs the eyes; and smaller, though still enlarged, anteriorly directed penes. The penes of G. falcipennis are posteriorly directed.
Figure 51. Gnathia epopostruma. Holotype, NMV J8373.
Figure 52. *Gnathia epopostruma*. Holotype, NMV J8373.
Gnathia iridomyrmex sp. nov.

Figures 54–56

Material examined. Holotype. Victoria, Saxon Reef, Portland (38°18.5'S, 141°38.5'E), 11 m, red coralline alga turf, SCUBA airlift, R.S. Wilson, 5 Mar 1992 (stn CRUST 178), NMV J27572 (1 male).

Description. Total length of holotype: 2.52 mm.

Preserved specimen dark brown. Cephalosome rectangular, 1.15 times as wide as long, lateral margins slightly convex. Eyes well developed, lateral and sessile. Frontal border transverse. Mediofrontal process inferior, broad, trifid. Superior frontolateral process acute, directed anterolaterally, twice length of mediofrontal process with 4 setae evenly spaced on internal margin. External scissura rounded. Supraocular lobe not pronounced. Cephalosome with small dorsal sulcus; translucent elliptical region anteromedial above buccal cavity. Antenna 2 longer than antenna 1; flagellum of antenna 1 of 5 articles, with 3 aesthetases, distal peduncle article longer than 2 proximal articles; flagellum of antenna 2 of 7 articles. Mandible straight, two-thirds length of cephalosome; with unarmed carina; without incisura; seta at midpoint, irregularly crenulate blade on proximal two-thirds with short basal neck. Maxilliped 5-articled; external margins of articles 2–4 bearing plumose setae; endite barely reaching article 3. Pylopod 3-articled, internal margin of plumose setae; article 1 with 3 areolae and 3 setae on ventral surface distally; article 2 with 4 setae on ventral surface; article 3 minute.

Pereon widest anteriorly, as wide as cephalosome; covered with numerous plumose setae. Pereonite 1 dorsally small, not reaching lateral margins and partially obscured laterally by pereonite 2. Pereonite 2 and 3 subequal; pereonite 4 narrower than others, with anterior constriction; pereonite 5 and 6 longest. Pereonite 7 very narrow, overlapping pleon. Pleonite 5 shorter than others, pleonal epimera prominent. Pleotelson subtriangular, as wide as long; lateral margins sinuous; with 3 pairs of simple setae and pair of setae on distal apex. Uropodal peduncle with 2 setae; rami subequal, reaching beyond apex of pleotelson; internal margins of rami bearing numerous plumose setae.

Pereopods subequal, with moderate cover of simple setae and crenulate anterior margin of...
Figure 54. *Gnathia iridomyrmex*. Holotype, NMV J27572.
Figure 55. Gnathia iridomyrmex. Holotype, NMV J27572.
Figure 56. Gnathia iridomyrmex. Holotype, NMV J27572.

basis; pereopod 6 with 2 anterior pectinate setae on merus; pereopods 2 and 6 with 1 posterior seta on carpus.

Pleopods setose. Pleopod 2 endopod with appendix masculina half length of rami. Penes 2 small contiguous papillae.

Distribution. Western Victoria, rocky substrate, 11 m depth.

Remarks. Gnathia iridomyrmex most closely resembles G. calmani Monod in the shape of the mediofrontal process, though in G. iridomyrmex the mediofrontal process is broader (half the width of the cephalon versus one-third the width). G. iridomyrmex also differs in being hirsute; lacking mandibular incisors, the posterior tubercle on the cephalon and anterolateral lobes on pereonite 4. G. iridomyrmex is also similar to G. odontomachus but differs in possessing a trifid mediofrontal process, more pronounced superior frontolateral processes and a simpler mandibular blade.

Gnathia mystrium sp. nov.

Figures 57–59

Material examined. Holotype. Tasmania, western Bass Strait, 36 km SSW of Stokes Point, King I. (40°26.7'S, 143°41.4'E), 85 m, medium sand. R.S. Wilson on RV Tangaroa, 22 Nov 1981 (stn BSS 198), NMV J27564 (1 male).

Paratypes. All collected by R.S. Wilson on RV Tangaroa, Nov 1981. Western Bass Strait, type locality, NMV J8352 (1). 20 km SSW of Stokes Point, King I. (40°19.5'S, 143°48.8'E), 71 m, sandy shell (stn BSS 199), NMV J8351 (1).

Eastern Bass Strait, 25 km NE of Deal I., Tasmania (39°14.8'S, 147°31.5'E), 57 m, medium sand (stn BSS 174), NMV J8353 (1). 100 km NE of North Point, Flinders I. (38°52.6'S, 148°25.2'E), 130 m, fine sand (stn BSS 170), NMV J8354 (1). 37 km NNE of Eddystone Point (40°40.7'S, 148°36.9'E), 67 m, muddy sand (stn BSS 164). NMV J8350 (1).

Description. Total length of holotype: 3.07 mm. Cephalosome quadrate, large, one-third length of animal, lateral margins convex. Eyes well developed, lateral and sessile. Frontal border slightly produced; mediofrontal process inferior, broad with bifid projection; superior frontolateral process conical, with 3 setae on internal margin. Inferior frontolateral process conical, ventral to superior frontolateral process. External scissura very shallow. Supraocular lobe very low, acute. Cephalosome with broad dorsal sulcus; paracocular tubercles and setae; translucent elliptical region anteromedially, above buccal cavity. Antenna 2 longer than
Figure 57. *Gnathia mystrium*. Holotype, NMV J27564.
Figure 58. Gnathia mystrium. Holotype, NMV J27564.
antenna 1; flagellum of antenna 1 of 5 articles, with 3 aesthetascs; flagellum of antenna 2 of 7 articles. Mandible long, two-thirds length of cephalosome; apex inflexed, distally raised in lateral view at 90°; with unarmed carina; slight mandibular incisor half way along; crenulate blade distally as far as cylindrical apex; setae at midpoint; erisma pronounced. Maxilliped 5-articled; external margins of articles 2–4 bearing plumose setae; endite barely reaching article 3, narrow. Pylopod 3-articled, internal margin of plumose setae; article 1 with 3 arcocles and 6 setae on ventral surface, 4 distally; article 2 with 3 setae on ventral surface; article 3 minute.

Pereon widest anteriorly, as wide as cephalosome, margins with numerous setae. Pereonite 1 dorsally fused with cephalosome, not visible. Pereonites 2 and 3 subequal. Pereonite 4 with anterior constriction and 2 anterior lobes. Pereonite 6 long, at least twice as long as other pleonites. Pereonite 7 very narrow, overlapping pleon. Pleon with only 4 segments visible dorsally, other pleonite obscured by pereon; epimeron not visible dorsally. Pleotelson subtriangular, longer than wide; lateral margins straight; with 2 pairs of simple setae laterally and pair of setae on distal apex. Uropodal peduncle with 1 seta; rami subequal, reaching apex of pleotelson; rami bearing numerous plumose setae distally.

Pereopods with few simple setae; pereopod 6 with 2 anterior spines on merus and crenulate anterior margin of basis; pereopod 2 and pereopod 6 with posterior spiniform seta on carpus.

Pleopods setose. Pleopod 2 endopod with appendix masculina half length of rami. Penes 2 small contiguous papillae.

Distribution. Bass Strait, 57–130 m depth.

Remarks. *Gnathia mystrium* is characterised by a bifid mediofrONTAL process and the presence of both superior and inferior lateral processes. The cephalosome is very large, one-third the length of the whole animal. The mandibles are long and dorsally inflected and pereonite 1 is indistinguishable.
Gnathia notostigma sp. nov.

Material examined. Holotype. Victoria, S of Point Hicks (38°14.80'S, 14°9.30'E), 200 m, coarse sand, gravel, WHOL epibenthic sled, M.F. Gomon et al. on ORV Franklin, 24 Jul 1986 (stn SLOPE 41), NMV J27574 (1 male).

Paratype. Type locality, NMV J19121 (1 male).

Description. Total length of holotype: 4.75 mm.

Cephalosome rectangular, 1.25 times as wide as long, lateral margins convex. Eyes well developed, lateral and sessile. Frontal border produced; mediofrontal process broad with bifid projection, with 3–4 setae laterally in indentation between processes; superior frontolateral process conical, with 4 setae spread evenly along external margin. Mediofrontal process paler than rest of frontal border in some specimens, appearing to be located ventral to superior frontolateral process but no sutures were found between processes. External scissura rounded. Supraocular lobe very low, acute. Cephalosome with short dorsal sulcus; very pronounced paraoocular tubercles forming slight mesolateral ridge, ornamentation particularly noticeable in lateral view. Antenna 2 longer than antenna 1; flagellum of antenna 1 of 5 articles, without aesthetases; flagellum of antenna 2 of 7 articles. Mandible straight, two-thirds length of cephalosome; with unarmed carina; slight mandibular incisor half-way along; ventral dentate blade on distal half, with smooth pseudoblade dorsally; internal lobe on proximal half a long crenulate lamina; seta at midpoint; erisma pronounced. Maxilliped 5-articled; external margins of articles 2–4 bearing plumose setae; endite short, narrow. Pylopod 3-articled, internal margin of simple setae; article 1 with 3 arcocae along internal margin, with 12 setae distally on ventral surface and along internal margin, article 2 with 6 setae on ventral surface; article 3 minute.

Pereon evenly sided, as wide as cephalosome. Pereonite 1 dorsally small, not reaching lateral margins and partially obscured laterally by pereonite 2. Pereonites 2 and 3 subequal. Pereonite 4 with anterior constriction. Pereonites 5 and 6 together longer than rest combined. Pereonite 7 very narrow, overlapping pleon. Pleonites 1–4 subequal, 5 narrower; pleonal epimera prominent. Pleotelson subtriangular, longer than wide; lateral margins sinuous, slightly notched distally; with 2 pairs of simple setae and pair of setae on distal apex. Uropodal peduncle with 1 seta; rami subequal, reaching apex of plectelson, bearing numerous plumose setae distally.

Pereopods with a moderate cover of simple setae; pereopod 6 with 2 anterior spiniform setae on merus; pereopod 2 with 1 posterior spiniform seta on carpus; pereopods 2, 5 and 6 with crenulate anterior margin of basis.

Pleopods setose. Pleopod 2 endopod with appendix masculina half length of rami. Penes 2 small contiguous papillae.

Distribution. Eastern Bass Strait, 200 m depth.

Remarks. *Gnathia notostigma* is differentiated from other Australian species by the very pronounced paraoocular ornamentation and ridge most clearly seen in lateral view. *G. lignophila* Müller from Malaysia also has similar paraoocular ornamentation and both species possess a narrow maxilliped endite. *G. notostigma* differs from *G. lignophila* in possessing shorter and more robust mandibles with a pseudoblade; a conical mediofrontal process with notched lateral margins and only a slight median depression while the mediofrontal process of *G. lignophila* is bifid (large median depression) with smooth lateral margins; and *G. lignophila* unlike *G. notostigma*, is densely covered in granules anteriorly. *G. notostigma* is also similar to *G. camponotus* but differs in possessing a more pronounced and anterior paraoocular ornamentation and a mediofrontal process with a slight median notch.

Gnathia odontomachus sp. nov.

Material examined. Holotype. Victoria, Western Port, off Crib Point (38°20.94'S, 14°13.33'E), 8 m, fine sand mud, Smith-McIntyre grab, A.J. Gilmour, Marine Studies Group on FV *Melita*, 29 Mar 1965 (stn CPBS-N 21), NMV J4374 (1 male).

Paratypes. Western Port, off Crib Point (38°20.81'S, 14°13.85'E), 13 m, gravel sand, Smith-McIntyre grab, A.J. Gilmour, Marine Studies Group on FV *Melita*, 30 Mar 1965 (stn CPBS-N 41), NMV J4370 (1 male); 10 m, 10 Mar 1965 (stn CPBS-N 23), NMV J4372 (1 male).

Description. Total length of holotype: 2.95 mm.

Cephalosome rectangular, 1.33 times as wide as long, lateral margins slightly convex. Eyes well developed, lateral and sessile. Frontal border transverse; mediofrontal process inferior, small, conical; superior frontolateral process rounded, with 3 large setae clumped on internal margin and 3 smaller setae evenly spaced on
Figure 60. Gnathia notostigma. Holotype, NMV J27574.
Figure 61. *Gnathia notostigma*. Holotype, NMV J27574.
Figure 62. Gnatia notostigma. Holotype, NMV 127574.

external margin. External scissura very shallow. Supraocular lobe not pronounced. Cephalosome with small dorsal sulcus and translucent, elliptical region anteromedially, within sulcus and above buccal cavity. Antenna 2 twice as long as antenna 1; flagellum of antenna 1 of 5 articles, with 2 aesthetascs, peduncle length subequal to flagellum; flagellum of antenna 2 of 7 articles. Mandible straight, two-thirds length of cephalosome; proximal third a pronounced basal neck; middle third progressively narrower, ventral dentate blade; distal third a long, cylindrical apex; with unarmed carina; mandibular incisor half-way along; seta at midpoint near incisor; erisma pronounced. Maxilliped 5-articled; external margins of articles 2–4 bearing plumose endite barely reaching article 3, narrow. Pypepod 3-articled; internal margin of plumose setae; article 1 with ring of short, stouter setae posteriorly, with 3 areolae distally and 12 setae distally on ventral surface and along median margin; article 2 with 7 setae on ventral surface; article 3 minute.

Pereon evenly sided, as wide as cephalosome, covered with numerous simple setae. Pereonite 1 dorsally reaching lateral margins, partially obscured laterally by pereonite 2; pereonite 4 with a slight anterior constriction and wide median groove; pereonite 5 with areae laterales. Pereonite 7 very narrow, overlapping pleon. Pleonites progressively narrower, pleonal epimera prominent. Pleotelson subtriangular, as wide as long, with few tubercules; lateral margins slightly sinuous; with 3 pairs of simple setae and pair of setae on distal apex. Uropodal peduncle with 1 seta; endopod longer than exopod, reaching apex of pleotelson; rami bearing numerous plumose setae distally.

Pereopods subequal, with moderate cover of simple setae; pereopod 2 with 1 posterior pecti-
Figure 63. *Gnathia odontomachus*. Holotype, NMV J4374.
Figure 64. Gnathia odontomachus. Holotype, NMV J4374.
nate seta on carpus; pereopod 6 with 2 anterior pectinate setae on merus and crenulate anterior margin of basis.

Pleopods setose. Pleopod 2 endopod with appendix masculina half length of rami. Penes 2 small contiguous papillae.

Distribution Off Crib Point, Western Port, Victoria, 8–13 m depth.

Remarks. *G. odontomachus* is one of many species from around the world which possess a inferior, conical medifrontal process and conical superior processes. Of the Australian fauna it most closely resembles *G. latidens* (Beddard) though is easily distinguished by its hirsute nature; more rounded mediofrontal process; and the lack of a pseudoblade.

Gnathia prolasius sp. nov.

Figures 66–68

Material examined. Holotype. Victoria, S of Point Hicks (38°21.90'S, 149°20.00'E), 1000 m, WHOI epibenthic sled, G.C.B. Poore et al. on ORV Franklin, 23 Jul 1986 (stn SLOPE 32), NMV J27577 (1 male).

Paratypes. All collected with WHOI epibenthic sled by G.C.B. Poore et al. on ORV Franklin, Jul 1986, Tasmania, off Freycinet Peninsula (42°0.20’S, 148°37.70’E), 720 m, coarse shelly sand (stn SLOPE 46), NMV J19111 (1 male). 42°2.20’S, 148°38.70’E, 800 m, coarse shelly sand, (stn SLOPE 45), NMV J19113 (1 male).

Victoria, S of Point Hicks (38°21.90’S, 149°20.00’E), 1000 m (stn SLOPE 32), NMV J27573 (20 males), 38°16.40’S, 149°27.60’E, 800 m, coarse shell (stn SLOPE 34), NMV J19112 (2 males).

Other material. New South Wales, off Eden (37°0.60’S, 150°20.70’E), 363 m, coarse shell (stn SLOPE 22), NMV J19114 (34).

Victoria, S of Point Hicks (38°21.90’S, 149°20.00’E), 1000 m (stn SLOPE 32), NMV J19115 (500).
Figure 66. *Gnathia prolasius*. Holotype, NMV J27577.
Figure 67. *Gnathia prolasius*. Holotype, NMV J27577.
Description. Total length of holotype: 3.49 mm.

Cephalosome rectangular, 1.2 times as wide as long, lateral margins convex. Eyes well developed, lateral and sessile. Frontal border produced; mediofrontal process quadrate, with 4 setae laterally; superior frontolateral process large, rounded, with anteromedial notch, twice length of mediofrontal process, with 2 small setae laterally. External scissura smoothly rounded. Supraocular lobe very low, acute. Cephalosome with broad dorsal sulcus; paracocular granules posterior to eye. Antenna 2 longer than antenna 1; flagellum of antenna 1 of 5 articles, with 1 aesthetace; flagellum of antenna 2 of 7 articles. Mandible straight, raised distally; two-thirds length of cephalosome; with unarm carina; blade complex, crenulate distally while smooth and linear proximally; seta at midpoint; basal neck smoothly arced; erisma pronounced, external lateral margin flattened. Maxilliped 5-articled, palp thin and elongate; external margins of articles 2–4 bearing plumose setae; internal margin with long setae joined together into 5 strands; endite short, narrow. Pylopod 3-articled, elongate and narrow, internal margin of fine short setae; with ring of short, stouter setae posteriorly; article 1 with 6 setae on ventral surface; article 2 elongate, with 7 setae distally on ventral surface; article 3 minute.

Pereon evenly sided, as wide as cephalosome. Pereonite 1 barely reaching lateral margins dorsally and partially obscured laterally by pereonite 2. Pereonites 2 and 3 subequal; pereonite 4 rectangular, longer than 2 and 3, with anterior constriction. Pereonite 5 and 6 rounded, as long as others together. Pleonites progressively narrower, pleonal epimera prominent. Pleotelson
subtriangular, longer than wide; lateral margins slightly concave; with pair of simple setae and pair of setae on distal apex. Uropodal peduncle with 5 small setae; endopod longer than exopod, reaching beyond apex of pleotelson.

Pereopods narrow, with few simple setae; ischium to carpus with small lateral projections.

Pleopods without setae. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. Eastern Bass Strait and south-eastern slope, 363–1000 m depth.

Remarks. Gnathia prolaxis is similar to G. stigmatos in overall body proportions, particularly the pereopods and mouthparts. G. prolaxis is easily recognised by the large, semicircular frontotateral processes.

Gnathia rhytidoponera sp. nov.

Figures 69–71

Material examined. Holotype. Western Coral Sea, NE of Townsville, Queensland (17°57'S, 147°02'E), 287–300 m, epibenthic sledge, M. Pichon et al. on RV Cidaris. 16 Jun 1986 (stn 146.2), QM W19962 (1 male).

Paratype. Western Coral Sea, NE of Townsville, Queensland (17°22'S, 146°48' E), 303–296 m, epibenthic sledge, M. Pichon et al. on RV Cidaris. 15 Jun 1986 (stn 143.2), QM W19963 (1 male).

Description. Total length of holotype: 3.86 mm.

Cephalosome subquadrate with a pronounced ventral rostrum, lateral margins convex. Rostrum narrow, conical with small lateral indentations. External scissura smoothly rounded. Cephalosome with a narrow dorsal sulcus extending medially, all the way to frontal border. Antenna 2 two times longer than antenna 1; flagellum of antenna 1 of 5 articles with 3 aesthetascs; flagellum of antenna 2 of 7 articles, peduncle articles 3 and 4 with numerous small setae. Mandible straight, two-thirds length of cephalosome; with unarmed carina; seta at midpoint; smooth ventral blade on proximal two-thirds, visible in lateral view, with a dentate pseudoblade dorsally; a quadrate internal lobe on proximal dorsal surface of mandible, clearly visible in lateral view. Maxilliped 5-articled; external margins of articles 2–4 bearing plumose setae; endite barely reaching article 3. Pylopod 3-articled, internal margin of plumose setae: article 1 with 3 large areolae and 7 setae on ventral surface, 4 distally; article 2 with 4 setae distally on ventral surface; article 3 minute.

Pereon widest anteriorly, as wide as cephalosome. Perconite 1 weakly fused with cephalosome, barely reaching lateral margins dorsally and partially obscured laterally by perconite 2. Perconites 2 and 3 subequal; perconite 4 narrower than others, with anterior constriction; perconites 5 and 6 together longer than others together. Perconite 6 with small lobui. Perconite 7 very narrow, overlapping pleon. Pleon widest in middle; pleonites 3–5 with prominent epicnura. Pleotelson subquadrate, longer than wide; lateral margins sinuous; with 1 pair of simple setae medianly and pair of setae on distal apex. Uropodal peduncle with 2 setae; rami subequal, reaching apex of pleotelson; internal margins of rami bearing numerous plumose setae.

Pereopods subequal, with few long simple setae. Pleopod 6 with 2 anterior pectinate setae on merus; pereopods 2 and 6 with posterior spiniform seta on carpus.

Pleopods setose. Pleopod 2 endopod with appendix masculina subequal length to rami. Penes 2 small contiguous papillae.

Distribution. Western Bass Strait, NE of Townsville, Queensland. 287–303 m depth.

Remarks. Gnathia rhytidoponera is very similar to G. halei Cals from southern Queensland. G. rhytidoponera differs in possessing a dorsally directed quadrat lobe on the posterior mandibles and lacking a row of setae each side of the base of the mediofrontal process.

Gnathia stigmatos sp. nov.

Figures 72–74

Material examined. Holotype. Victoria, S of Point Hicks (38°14.80'S, 149°30'E), 200 m, coarse sand, gravel, WHOI epibenthic sled, M.F. Gomon et al. on ORV Franklin, 24 Jul 1986 (stn SLOPE 41), NMV J27576 (1 male).

Paratypes. Type locality. NMV J19124 (22 males).

Other material. Tasmania, eastern Bass Strait, 82 km ENE of North Point. Flinders 1, (39°27.7'S, 148°41.4'E), 293 m, coarse sand, naturalists' dredge. G.C.B. Poore on HMAS Kanimbla, 28 Mar 1979 (stn BSS 36), NMV J7793 (8); 70 km ENE of North Point. Flinders 1, (39°28.4'S, 148°41.8'E), 110 m, coarse sand (stn BSS 35), NMV J7794 (2); 50 km NE of Babel 1, (39°40.3'S, 148°46.5'E), 293 m, rock, coarse sand (stn BSS 33), NMV J7795 (11).

Victoria, eastern Bass Strait, near Pt Ricardo (37°53'S, 148°30'E), 27–45 m, medium sand, Smith-
Figure 69. Gnathia rhytidoponera. Holotype, QM W19962
Figure 70. *Gnathia rhytidoponera*. Holotype, QM W19962
Figure 71. *Gnathia rhytidoponera*. Holotype, QM W19962

McIntyre grab, N. Coleman on FV *Sarda*, Feb 1991 (stn MSL-EG 107), NMV J24631 (2); (stn MSL-EG 106), NMV J24630 (1); (stn MSL-EG 103), NMV J24628 (2); (stn MSL-EG 104), NMV J24629 (1).

Description. Total length of holotype: 3.10 mm.

Cephalosome rectangular, 1.1 times as wide as long, lateral margins slightly convex. Eyes well developed, lateral and sessile. Frontal border produced, transverse between mandible; mediofrontal process translucent, with median notch and 3–4 long setae laterally; superior frontolateral process conical, with 5–6 short setae on lateral margin and 4 larger setae near mandible base. External scissura rounded. Supraocular lobe very low, acute. Cephalosome with broad dorsal sulcus; pronounced paraocular tubercles and setae. Antenna 2 longer than antenna 1; flagellum of antenna 1 of 5 articles, without aesthetasc; flagellum of antenna 2 of 7 articles. Mandible clongate, curved; two-thirds length of cephalosome; with unarmed carina; smooth arc-shaped blade on distal two-thirds, produced proximally; seta at midpoint; long, smooth straight basal neck; erisma pronounced. Maxillep 5-articled; external margins of articles 2–4 bearing plumose setae; palp thin and elongate; endite barely reaching article 3, narrow, with 1 coupling hook. Pylopod 3-articled, elongate and narrow, internal margin of fine short setae; with ring of short, stouter setae posteriorly; article 1 with 9 setae on ventral surface, predominantly along median axis; article 2 elongate, with 12 setae on ventral surface; article 3 minute.

Pereon evenly sided, as wide as cephalosome; margins with numerous setae. Pereonite 1 barely reaching lateral margins dorsally and partially obscured laterally by pereonite 2. Pereonites 2 and 3 subequal, pereonite 4 rectangular, longer than 2 and 3; with anterior constriction. Perconites 5 and 6 rounded, together as long as others combined. Pereonite 7 not visible. Pleonites 2–4 subequal; posterior border of pleonite 5 produced; pleonal epimera prominent. Pleotelson...
Figure 72. *Gnathia stigmacros*. Holotype, NMV J27576.
Figure 73. *Gnathia stigmacros*. Holotype, NMV J27576.
subtriangular, longer than wide; lateral margins slightly sinuous; with 2 pairs of simple setae and pair of setae on distal apex. Uropod peduncle without setae; endopod longer than exopod, reaching beyond apex of pleotelson; rami margins with numerous long simple setae.

Pereopods narrow, with few simple setae; ischium to carpus with small lateral projections, particularly on pereopods 5 and 6.

Pleopods setose. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. Victoria, eastern Bass Strait, 27–293 m depth.

Remarks. *Gnathia stigmacros* differs from *G. prolasius* in possessing a completely smooth blade, many setae on the frontal border and more pronounced paraocular tubercles. *G. stigmacros* resembles *G. malaysiensis* Müller in the shape of the mediofrontal process and the mandible but is easily distinguished by its much shorter superior frontolateral processes and relatively straight frontal border.

Monodgnathia gen. nov.

Type species. *Monodgnathia ponera* sp. nov.

Diagnosis. Eyes absent. Frontal border produced as distinct delineated region (chalky white in Australian species); without processes. Mandible with occluding, smooth mandibular blade. Pereonite 1 immersed in cephalon. Pylopod 5-articled; operculate, article 2 enlarged; article 3 with spines; lacking plumose setae on external margin. Pereopod 4 basis with anterior quadrate lobe and ischium distally expanded into circular cusp.

Etymology. For Théodore Monod whose monumental 1926 work on Gnathiidae has become a classic study of a family of Isopoda.

Remarks. *Monodgnathia* and *Bathygnathia* are closely related genera (see cladogram) with
almost identical pylopods. Both genera possess a 5-articled, operculate pylopod with greatly enlarged second article and a minute fifth article. *Monodgnathia* is characterised by the presence of a curved mandible with a smooth mandibular blade, a distinct frontal border which is not produced into a rostrum and the absence of a protruding buccal cavity wall. Four species are recognised, two newly described and two transferred from *Akidognathia*. Remaining species of *Akidognathia* are now members of *Bathygnathia* of which *Akidognathia* is now a junior synonym. *Akidognathia poteriophora* Monod, 1926 is tentatively placed in the new genus on the basis of the mandible and rostrum although the pylopod is not operculate and the basis of percopod 4 lacks the anterior quadrato lobe. The pylopod, maxilliped and fusion of perconites 5 and 6 suggest that *A. poteriophora* is a subadult specimen with some features not fully developed but it must be stressed that this conclusion has been reached based on the literature.

Key to males of *Monodgnathia* from Australia

1. Frontal border produced medianly, lacking setae; cephalon lacking projections covering base of mandibles *M. ponera*

 — Entire frontal border produced, with setae; cephalon with quadrate projections covering base of mandibles *M. colobostruma*

*Monodgnathia colobostrum*a sp. nov.

Figures 75-77

Material examined. Holotype, Victoria, S of Point Hicks (38°21.9’S, 149°20.0’E), 1000 m. WHOI epibenthic sled, G.C.B. Poore et al. on ORV *Franklin*, 23 Jul 1986 (sn IN SLOPE 32). NMV J19115 (1 male).

Description. Total length of holotype: 6.97 mm.

Cephalosome rectangular, 1.25 times as long as wide, lateral margins convex. Eyes absent. Entire frontal border produced, truncated, with 6 large setae medially and 4–5 smaller setae spreading submarginally; distinct chalky white region between mandibles at end of short dorsal sulcus. Cephalosome with low posterior median tuberole and distinct quadrate cover over base of mandible. Antenna 2 longer than antenna 1; flagellum of antenna 1 of 5 articles, with 3 aesthetes; flagellum of antenna 2 of 7 articles. Mandible half length of cephalosome; apex curved inwards; with unarmed carina; smooth ocluding blade proximally and flat dorsal lobe, proximally. Maxilliped 5-articled; external margins of articles 2–4 bearing plumose setae; endite clearly reaching article 3, with 6 coupling hooks. Pylopod 5-articled, with many simple setae medially, mainly on articles 3 and 4; articles 2 and 3 with large areolae; article 3 with 2 pectinate spiniform setae on external anterolateral margin; article 5 minute.

Percon evenly sided, slightly wider than cephalosome; perconites progressively longer. Perconeite 1 dorsally small, not reaching lateral margins of percon and partially obscured laterally by perconeite 2. Perconeite 4 with slight anterior constriction and median groove. Perconeite 5 with dorsal sulcus and areae laterales. Perconite 6 with lobes laterales and small lobii. Perconeite 7 small, a thin band; overlapping pleon. Pleontes similar, pleone 5 slightly longer than others; pleonal epimera prominent. Pleotelson subtriangular, as wide as long; lateral margins slightly sinusous with 5–6 pairs of simple setae laterally and 1 medianly. Uropodal pedicle with 2 setae; ram of subequal length, reaching apex of pleotelson; internal margins of ram bearing few plumose setae.

Pereopods 2 and 3 less robust than others, with dense cover of simple setae; others with moderate cover of simple setae; percopod 4 with pronounced anterior quadrate lobe, ischium distally expanded as flat, circular projection with 4 large tuberoles; carpus to unguis extending at right angle to basal pereopod, forming a surface with circular eusp of ischium.

Pleopods with short marginal setae. Pleopod 2 endopod with appendix masculina subequal to length of rami. Penes 2 contiguous papilae.

Distribution. Eastern Bass Strait slope, 1000 m depth.

Remarks. *Monodgnathia colobostrum* and *M. ponera* are the first records of this genus from Australian waters. *M. colobostrum* and the other members of this genus differ from the only known specimen of *M. poteriophora* (which we believe to be a subadult specimen – see *Monodg-
Figure 75. Monodgnathia colobostruma. Holotype. NMV J19115.
Figure 76. Monodgnathia colobosrima. Holotype, NMV J19115.
Monodgnathia colobostruma

M. colobostruma possesses a more robust habitus than other species of Monodgnathia and is characterised by a square frontal border produced across its entire length, not only between the base of the mandibles; raised protrusions on the cephalon at the base of the mandibles and slight dorsal lobes on the mandibles.

Monodgnathia ponera sp. nov.

Figures 78–80

Material examined. Holotype. Lord Howe Rise, southwestern Pacific Ocean (29°13.3′S, 160°35.4′E), 1550 m, epibenthic sled, Australian Museum party on ORV Franklin, 4 May 1989 (stn 05/89 site 20), AM P41294 (1 male).

Description. Total length of holotype: 11.98 mm.

Cephalosome rectangular, 1.4 times as wide as long, lateral margins convex. Eyes absent. Frontal border produced, smoothly rounded as a distinct chalky white region, devoid of setae. External scissura rounded. Supraocular lobe smoothly convex. Cephalon with 2 small depressions medianly; anterior one larger at base of short sulcus; smaller posterior one near anterior border of peronite 1. Antenna 2 longer than antenna 1; flagellum of antenna 1 of 5 articles, with 3 aesthetascs; flagellum of antenna 2 of 8 articles. Mandible subequal to length of cephalosome; apex curved inwards; with unarmed carina; slight mandibular incisor one-third way along; small basal neck obscured dorsally by rostrum; blades smooth proximally,
Figure 78. Monodognathia ponera. Holotype, AM P41294.
Figure 79. Monodgnathia ponera. Holotype, AM P41294.
Figure 80. *Monodgnathia ponera*. Holotype, AM P41294.
occluding. Maxilliped 5-articled; external margins of articles 2-4 bearing plumose setae, article 2 short; endite clearly reaching article 3, narrow, with 6 coupling hooks. Pylopod 5-articled, with many simple setae medially, from distally on article 2 to base of article 5; article 3 with at least 1 pectinate spiniform seta on internal anterolateral margin (second seta damaged distally); article 5 minute.

Pereon widest posteriorly at pereonites 5 and 6, 1.25 times as wide as cephalosome; pereonites length and width increasing progressively. Pereonite 1 produced slightly, barely reaching lateral margins dorsally and partially obscured laterally by pereonite 2. Pereonite 4 with anterior constriction, median groove as bilobed sulcus. Pereonite 5 with dorsal sulcus and areae laterales. Pereonite 6 with small lobi laterales and pronounced lobui; pereonites 5 and 6 longer than other pereonites combined. Pereonite 7 very narrow, overlapping pleon. Pleon progressively narrower, epimera prominent. Pleotelson subtriangular, longer than wide; lateral margins slightly sinuous; with 8 pairs of simple setae laterally and pair of small setae on distal apex. Uropodal peduncle with 1 seta; rami subequal, reaching beyond apex of pleotelson, bearing long simple setae.

Pereopods with dense cover of simple setae particularly on ischium to dactylus; pereopod 4 basis with anterior quadrate lobe, ischium distally expanded as flat, large circular cusp-shaped projection with 4-5 large tubercles; carpus to unguis extending at right angle to basis, forming surface with circular cusp of ischium.

Pleopods without setae. Pleopod 2 endopod with appendix masculina three-quarters length of rami. Penes 2 contiguous papillae.

Distribution. South-western Pacific Ocean, 1550 m depth.

Remarks. M. ponera most resembles M. cristatipes (Stebbing). Both species possess a smoothly rounded frontal border that protrudes between the mandibles; relatively simple mandibles; and pronounced lobui. M. ponera differs from M. cristatipes principally in the proportions of the cephalon. M. cristatipes possesses a rounded cephalon while the cephalon of M. ponera is more rectangular.

Paraagnathia Omer-Cooper and Omer-Cooper

Metagnathia Monod, 1922: 645 (type species: Ancus formica Hesse, 1864).

Type species. Ancus haldalii Bate and Westwood, 1868 (original designation), junior subjective synonym of Ancus formica Hesse, 1864.

Diagnosis. Eyes present. Frontal margin of cephalon produced, without processes. Mandibles with simple crenulate blade. Peroneite 1 immersed in cephalon. Peroneite 4 with anterior constriction. Pylopod 5-articled; operculate (articles 1, 3 and 4 enlarged, article 2 reduced); without margin of plumose setae. Pleonites without setae.

Remarks. Paragnathia is a monotypic Afro-European genus, the only species being P. formica (Hesse, 1864). The species has a complex synonymy (Monod, 1926). It is the only species of Gnathiidae with an operculate, 6-articled pylopod with a reduced second article and mandibles with a crenulate blade.

Thaumastognathia Monod

Thaumastognathia Monod, 1926: 304.

Type species. Thaumastognathia dieeros Monod, 1926 (monotypy).

Remarks. Thaumastognathia is characterised by the very small size of the pylopod which can be clearly seen only under a compound microscope, and the reduction or absence of the maxilliped; peron smooth, cephalosome quasipentagonal, antennae curved under the mandibles, antennae 1 longer than antenna 2, absence of peroneite 7, and the pleon folded under the peron.

These are the first records of Thaumastognathia since Monod (1926) described the type species, T. dieeros, from New Zealand. The three new species bring the total number of species to four, all found in Australasia. A specimen belonging to another species of Thaumastognathia was collected from north Queensland but was not described because of its poor condition. All species of Thaumastognathia are small, less than 2.5 mm long.
Key to males of species of Thaumastognathia

1. Mandibles with pronounced mandibular incisura; pleotelson tapering, margins deeply concave T. wasmannia
 — Mandibles without mandibular incisura; pleotelson subtriangular, margins straight or slightly sinuous 2
2. Frontal border slightly excavated, maxillipeds absent T. metaphene
 — Frontal border produced, maxillipeds present 3
3. Ventral margin of cephalon with pair of strong projections lateral to mandibles; carpi of pereopods with row of even spines T. diceros
 — Ventral margin of cephalon without strong projections; carpi of pereopods with uneven spination T. orectognathus

Thaumastognathia metaphene sp. nov.

Figures 81, 82

Material examined. Holotype. South Australia, Pearson L, E side in bay (33°57.30'S, 134°15.70'E), 20 m, bryozoans, sponges etc. on shaded surface, SCUBA, G.C.B. Poore, 17 Apr 1985 (stn SA 55), NMV J27570 (1 male).

Paratype. Type locality. NMV J27560 (1 male).

Description. Total length of holotype: 2.51 mm.

Cephalosome quasipentagonal. 2.3 times as wide as long, margins slightly concave. Eyes well developed, lateral and sessile. Frontal border roughly transverse, excavated medially; mediofrontal process small, rounded, located at base of excavation; superior frontolateral process smoothly rounded, forming lateral border for median excavation, with 5-6 setae submarginally spreading laterally, along slight excavation at base of mandible. Inferior frontolateral process conical, mostly transparent, directly ventral to superior frontolateral process. Supraocular lobe not pronounced. Antennae stout, curved under mandible, antenna 1 longer than 2; flagellum of antenna 1 of 3 articles, with 2 aesthetascs; flagellum of antenna 2 of 3 articles, shorter than last article of peduncle. Mandible strongly curved, depressed in lateral view, half length of cephalosome; with unarmed carina; slight incisura; dentate blade slightly produced on proximal half; seta at midpoint. Maxillipeds absent. Pylopod thin, elongate, 5-articled, first and third with seta, fifth minute.

Peron central, wider than cephalosome. Peronite 1 dorsally small, not reaching lateral margins and partially obscured laterally by peronite 2. Peronites 2, 3 and 4 progressively longer. Peronites 5 and 6 fused, longer than others together. Peronite 7 not visible dorsally. Pleon folded under pereon, pleonite 5 almost as wide but longer than other pleonites, all without setae. Pleotelson subtriangular, wider than long with pair of simple setae laterally and pair of setae on distal apex. Uropodal peduncle without setae, endopod twice as long as exopod, not reaching apex of pleotelson, with 4 setae distally and 1 seta laterally; exopod with 3 distal setae.

Pereopods with posterior and lateral faces of ischium-carpus with irregular acute projections, elsewhere few simple setae.

Pleopods without setae. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. South Australia, rocky substrate, 20 m depth.

Remarks. Thaumastognathia is characterised by an oval pereon, cephalosome with concave posterolateral margins and a pleon curving under the pereon. T. diceros Monod from New Zealand is easily distinguishable from T. metaphene and the other newly described species by the frontal, horn-like protrusions. T. metaphene is characterised by the slight median indentation of the frontal border.

Thaumastognathia orectognathus sp. nov.

Figures 83, 84

Material examined. Holotype. Victoria, central Bass Strait, 66 km S of Rodondo L., (39°48.6'S, 146°18.8'E), 82 m, sand-silt-mud, WHOI epibenthic sled, R.S. Wilson on RV Tangaroa, 13 Nov 1981 (stn BSS 158), NMV J27567 (1 male).

Paratypes. Most collected using WHOI epibenthic sled by R.S. Wilson on RV Tangaroa, Nov 1981, Tasmania, Central Bass Strait, 9 km SSW of Cape Adan- san, Three Hummock I. (40°30.9'S, 144°56'E), 27 m,
Figure 81. *Thaumastognathia metaphone*. Holotype, NMV J27570.
Figure 82. *Thaumastognathia* metaphone. Holotype, NMV J27570.
Figure 83. *Thaumastognathia orectognathus*. Holotype, NMV J27567.
Figure 84. *Thaumastognathia orectognathus*. Holotype, NMV J27567.
very coarse sand, 2 Nov 1980 (stn BSS 109), NMV J8356 (1). Eastern Bass Strait, 100 km NE of North Point, Flinders I. (38°52.6'S, 148°25.2'E), 130 m, fine sand. (stn BSS 170). NMV J8361 (1). 85 km NE of North Point, Flinders I. (39°02.4'S, 148°30.6'E), 120 m, muddy sand (stn BSS 169), NMV J8355 (1).

Victoria. Central Bass Strait, 66 km S of Rodondo I. (39°48.6'S, 146°18.8'E), 82 m, sand-silt-mud (stn BSS 158). NMV J8360 (3). Eastern Bass Strait, 43 km SE of Port Albert (38°53.7'S, 147°06.5'E), 58 m, coarse shell (stn BSS 177). NMV J8358 (1), NMV J8357 (2). 14.3 km WSW of Pt Ricardo (37°50.74'S, 148°28.40'E), 32 m, rock-sand-mud, Smith-McIntyre grab. Marine Science Laboratories on RV Sword, 26 Sep 1990 (stn MSL-EG 46), NMV J24632 (4).

Other material. Bass Strait, 15 km S of Cape Wellington. (39°03.2'S, 146°39.5'E), 55 m, muddy fine sand (stn BSS 179). NMV J8359 (2); S of Point Hicks (38°14.80'S, 149°9.30'E), 200 m, coarse sand (stn SLOPE 41), NMV J19124 (2).

Description. Total length of holotype: 1.50 mm.

Cephalosome quasipentagonal, 1.8 times as wide as long, lateral margins slightly concave. Eyes well developed, lateral and sessile. Frontal border produced dorsally with slightly excavate trunclate midanterior margin, with 6 setae submarginally each side. Supraocular lobe not pronounced. Antennae stout, subequal, curved under mandible; flagellum of antenna 1 of 3 articles, with 4 aesthetases; flagellum of antenna 2 of 4 articles, shorter than last article of peduncle. Mandible strongly curved, half length of cephalosome; with unarmored carina; crenulate blade produced on proximal half; seta at midpoint. Maxilliped very reduced, of 2 articles; first with crenulate mesial margin, second much shorter, with 4 apical setae. Pylopod thin, elongate, of 4 articles, first with 3 setae, third with 1 seta.

Pereon oval-rectangular, as wide as cephalosome. Pereonite 1 dorsally small, not reaching lateral margins and not visible laterally. Pereonites 2, 3 and 4 progressively longer. Pereonites 5 and 6 fused, longer than others together. Pereonite 7 not visible dorsally. Pleon folded under pereon, pleonites similar, progressively narrower, all without setae. Pleotelson subtriangular, wider than long, with pair of simple setae laterally and pair of setae on apex. Uropodal peduncle without setae, endopod twice as long as exopod, reaching beyond apex of pleotelson, dorsolaterally with 3 setae, distally with 4 setae, exopod with 3 distal setae.

Pereopods 2–6 bases with plumose setae on anterior margins, elsewhere few simple setae, posterior and lateral faces of ischium-carpus with irregular acute projections, propodus palms with 2 short spiniform setae.

Pleopods without setae. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.

Distribution. Central and eastern Bass Strait, 27–200 m depth.

Remarks. Thaumastognathia orectognathus is most easily recognised by its produced frontal border.

Thaumastognathia wasmannia sp. nov.

Figures 85, 86

Material examined. Holotype. Tasman Sea, 20 km E of Falmouth, Tasmania (41°32.9'S, 148°35.0'E), 122 m, WHOI epibenthic sled, R.S. Wilson on RV Soela, 10 Oct 1984 (stn S05/84 5), NMV J27579 (1 male).

Paratype. Type locality, NMV J27559 (1 male).

Description. Total length of holotype: 1.73 mm.

Preserved specimen opaque. Cephalosome quasipentagonal, 2.5 times as wide as long, lateral margins slightly concave. Eyes well developed, lateral and sessile. Frontal border transverse, produced very slightly at base of mandible with shallow excavate midanterior margin, 5 setae submarginally each side forming slight arc. External scissure very shallow. Supraocular lobe not pronounced. Antennae stout, subequal, curved under mandible; flagellum of antenna 1 of 2 articles, with 2 aesthetases; flagellum of antenna 2 of 4 articles, shorter than last article of peduncle. Mandible strongly curved, two-thirds length of cephalosome; with unarmored carina; pronounced mandibular incisor about 0.2 length of mandible, thin and very translucent; crenulate blade weakly produced on proximal two-thirds; setae one-third way along. Maxilliped absent. Pylopod thin, elongate, of 4 articles, first with 2 or 3 setae.

Pereon oval, wider than cephalosome. Pereonite 1 dorsally small, not reaching lateral margins and partially obscured laterally by pereonite 2. Pereonite 4 longer than 2 and 3. Pereonites 5 and 6 weakly fused, longer than others together. Pereonite 7 not visible dorsally. Pleon folded under pereon, pleonites 4 and 5 as wide and longer than anterior ones, all without setae. Pleotelson elongate, sharply tapering, as wide as long, lateral margins deeply concave with 2 pairs of simple setae medially and pair of setae on distal apex. Uropodal peduncle with 1 seta, rami subequal, reaching just beyond apex of pleotelson; endopod dorsolaterally with 3 setae, distally
Figure 85. *Thaumastognathia wasmannia*. Holotype, NMV J27579.
with 2 setae; exopod with 3 lateral and 3 distal setae. Percopods 4–6 larger than 2 and 3; their bases with few plumose setae on anterior margins, elsewhere few simple setae; posterior and lateral faces of merus-carpus with irregular acute projections, most pronounced on pereopod 6. Pleopods without setae. Pleopod 2 endopod lacking appendix masculina. Penes 2 small contiguous papillae.
Distribution. Eastern Tasmania, 122 m depth.

Remarks. T. wasmanni a is characterised by pronounced mandibular incisors, relatively straight frontal border and deeply concave lateral margins on the pleotelson.

Acknowledgments

This project is part of a wide-ranging exploration of the continental shelf and slope of south-eastern Australia and has been supported by grants from the Australian Research Grants scheme and by the Victorian Institute of Marine Sciences. We are grateful to the ORV Franklin Steering Committee and to CSIRO Marine Laboratories, Hobart, for the provision of ship-time and to the master and crew of the vessel for help aboard during the collection of the deep-water material. We are especially grateful to Jean Just for sorting the material. Much of the shallow-water material in the collections of the Museum of Victoria was obtained with assistance from the Australian Biological Resources Study which we thank.

We thank for the loan of material: J.K. Lowry, Australian Museum, Sydney, N.L. Bruce, Queensland Museum, Brisbane, P. Anderson, National Museum of New Zealand, Wellington (for material from the New Zealand Oceanographic Institute) and J.-W. Wägele, Universität Bielefeld, Germany for the loan of Antarctic specimens.

References

Bacescu, M., 1960. Citeva animale nemeuncosute ince in Marea Neagra si descrierea unor malacostracei noi (Elaphognathia monodii n. sp. si Pontonianais borcea n. g. n. sp.) provenind din apel pontice preboforic. Studii si Cercetari de Biologie, Seria Zoologie (Bucuresti) 12: 107-124.

Daguerrre de Hureaux, N., 1971. Contribution à l'étude des isopodes marins du Maroc III.

Phylogeny and Biogeography of Gnathiidae

Oyster Fisheries of the Gulf of Manaar 4: 1–64, pls 1–12.